Ацетилен или пропан что лучше?

В чём разница?

Разница между Ацетиленом и Пропаном

Основное различие между Ацетиленом и Пропаном заключается в том, что Ацетилен имеет тройную связь между двумя атомами углерода, тогда как Пропан не имеет двойных или тройных связей между атомами углерода, кроме одинарных связей.

Ацетилен – обозначается как C2H2, тогда как его химическое название – Этин. Кроме того, это углеводород и самый простой алкин, который существует в виде бесцветного газа. Пропан обозначается как C3H8, и это простой алкан, который не имеет ненасыщенности (без двойных или тройных связей). Он также существует в виде газа. Тем не менее, его часто превращают в жидкое состояние.

Ацетилен является газом для промышленных методов резки, всех процессов промышленной термической резки, но когда на рынок был представлен пропан (СУГ), весь процесс термической резки изменился, и началась битва между пропаном (СУГ) и ацетиленом.

Содержание

  1. Обзор и основные отличия
  2. Что такое Ацетилен
  3. Что такое Пропан
  4. В чем разница между Ацетиленом и Пропаном
  5. Заключение

Что такое Ацетилен?

Ацетилен является самым простым алкином, имеющим химическую формулу C2H2. Химическое название этого соединения – Этин. Кроме того, это бесцветный газ при комнатной температуре и обычном давлении.

Его можно классифицировать как углеводород, так как он содержит только атомы углерода и водорода со связями между атомами углерода. Газ ацетилен широко используют для сварки, резки, в качестве топлива и строительного материала для синтеза различных химических соединений.

Существует тройная связь между двумя атомами углерода этой молекулы. Более того, валентность одного атома углерода равна 4. Следовательно, каждый атом углерода связывается с атомом водорода через одинарную связь. Молекула имеет линейную геометрию, и это плоская структура. Каждый атом углерода ацетилена sp-гибридизован.

Что такое Пропан?

Пропан представляет собой простой алкан, имеющий химическую формулу C3H8. Это бесцветный газ при комнатной температуре, и в чистом виде этот газ не имеет запаха. Его молярная масса составляет 44,10 г/моль.

Баллон с Пропаном

Чтобы облегчить обнаружение пропана в случае утечки или разлива, производители добавляют различные химические соединения, чтобы придать ему характерный запах.

Это соединение широко используется для сварки, резки и в качестве топлива. СУГ (сжиженный углеводородный газ) имеет в своём составе сжиженный газ пропан.

Тем не менее, есть некоторые другие газы, которые используют в качестве СУГ. Пример: бутан, пропилен, и д.р. Этот газ образуется как побочный продукт двух процессов, переработки природного газа и нефтепереработки.

В чем разница между Ацетиленом и Пропаном?

Ацетилен является самым простым алкином, имеющим химическую формулу C2H2. Молярная масса его составляет 26,04 г/моль. Это ненасыщенное соединение, так как оно имеет тройную связь между двумя атомами углерода. Пропан представляет собой простой алкан, имеющий химическую формулу C3H8. Молярная масса составляет 44,01 г/моль. Это насыщенное соединение, так как оно имеет только одинарные связи между атомами, здесь нет двойных или тройных связей.

Разница в температурах горения в кислороде:

  • Температура пламени при сжигании пропана в кислороде составляет 2800 градусов Цельсия.
  • Температура пламени при сжигании ацетилена в кислороде составляет 3100 градусов Цельсия.

Ацетиленом и Пропаном для сварки

Во-первых: пропан нельзя использовать для газовой сварки. Когда ацетилен горит в кислороде, он создает зону восстановления, которая очищает поверхность стали. Пропан не имеет восстановительной зоны, такой как у ацетилена, и поэтому не может быть использован для газовой сварки.

Ацетиленом и Пропаном для пайки

Пропан и ацетилен может быть использован для пайки. Для капиллярной пайки (серебряной пайки) получается равный по качеству результат. Для «сварки» припоя (толстоплавких сплавов для пайки) ацетилен будет преимуществом

Ацетилен и Пропан для резки

Как Пропан, так и ацетилен может использоваться для резки. Если вы режете ацетиленом, вы обычно кладете кончик внутреннего конуса пламени на металл (1 мм от поверхности пластины). Если вы сделаете то же самое с пропаном, вы будете долго ждать. Если вы поднимете горелку так, чтобы использовался внешний конус пламени, процесс предварительного нагрева начнется быстрее. Пропан выделяет лишь небольшую часть тепла во внутреннем конусе пламени (менее 10%), поэтому большая часть тепла в пламени находится во внешнем конусе. Ацетилен выделяет почти 40% своего тепла во внутреннем конусе пламени.

Следовательно, ацетилен лучше для резки, чем пропан. Хотя температура ацетилена выше, чем у пропана, факт заключается в том, что люди используют пропан неправильно для резки. Ошибка, которую они совершают, состоит в том, что они режут пропаном, как они режут ацетиленом. Там, где тепло в пропане, пламя подогрева не там, где оно с ацетиленом. Короче говоря, для пропана требуется другая техника, и, как правило, ацетилен нагревается быстрее. На верфях для демонтажа и сноса судов и на свалке часто используют пропан для резки, поскольку качество резки не имеет значения.

Ацетилен и Пропан для о богрева

Сказать, что пропан выделяет меньше тепла, это неправильно. Ацетилен более горячий, но выделяет меньше тепла. Большая часть предварительного нагрева осуществляется с помощью кислорода/пропана. Это факт. Доступное тепло от пропана выше.

Оборудование для резки Ацетиленом и Пропаном

Для резки требуются различные режущие насадки и режущие сопла

Сопло для резки Пропаном и Ацетиленом

Экономика при резке Ацетиленом и Пропаном

Пропан имеет более высокие стехиометрические потребности в кислороде, чем ацетилен. Для максимальной температуры пламени в кислороде отношение объема кислорода к топливному газу составляет 1,2: 1 для ацетилена и 4,3: 1 для пропана. Таким образом, при использовании пропана расходуется гораздо больше кислорода. Несмотря на то, что пропан дешевле, чем ацетилен, этому препятствует более высокое потребление кислорода.

Безопасность Ацетилена и Пропана

Самый главный недостаток использования пропана – это, аспект безопасности.

Удельный вес ацетилена составляет 0,9, поэтому он легче воздуха (у воздуха 1). Если газ просачивается, он поднимется. Удельный вес пропана составляет 1,6 и он тяжелее воздуха (то же самое для других углеводородных газов, таких как бутан и МАПП газ (модифицированный газ пропан). Любая утечка пропана в замкнутом пространстве будет опускаться и концентрироваться на нижнем уровне и там накапливаться.

Чтобы пропан эффективно горел, кислородно-газовая смесь должна находиться в определенном диапазоне. Для идеальных условий должно быть четыре части пропана на 96 частей кислорода. Когда газ горит вне этих параметров, результатом является неполное сгорание, это производит к чрезмерному количеству окиси углерода. Это может быть очень опасно, если в помещении отсутствует надлежащая вентиляция. Отравление угарным газом может привести к смерти, так как токсичный газ замещает кислород в крови.

Основная информация – Ацетилен против Пропана

Ацетилен и Пропан являются углеводородными соединениями и являются газообразными при комнатной температуре. Они применяются для сварки, резки и в качестве топлива. Разница между Ацетиленом и Пропаном заключается в том, что Ацетилен имеет тройную связь между двумя атомами углерода, тогда как Пропан не имеет двойных или тройных связей между атомами углерода, а имеет только одинарные связи.

Горючие газы

Горючие газы в смеси с кислородом предназначены для газопламенной обработки металлов. Наиболее часто для газовой сварки применяют ацетилен. Для газовой резки сталей, когда температура подогревающего пламени не оказывает решающего влияния на протекание процесса, а лишь увеличивает продолжительность начального подогрева металла перед резкой, рекомендуется использовать газы-заменители ацетилена, у которых температура пламени не менее 1800-2000°C.

В качестве газов-заменителей ацетилена используют:

  • природный газ
  • коксовый газ
  • пропан
  • бутан
  • пропан-бутановую смесь
  • пары бензина
  • пары керосина
  • городской газ
  • МАФ

Содержание

  1. Ацетилен
  2. Водород
  3. Коксовый газ
  4. Городской газ
  5. Пропан
  6. Бензин
  7. Керосин

Ацетилен

Ацетилен С2Н2 является основным горючим газом для газовой сварки и резки металлов, температура его плавления при сгорании в смеси с технически чистым кислородом достигает 3150°С.

Ацетилен является химическим соединением углерода и водорода. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом, обусловленным содержащимися в нем примесями сероводорода, аммиака, фосфористого водорода и др. Длительное вдыхание его вызывает тошноту, головокружение и даже отравление.

Ацетилен легче воздуха, 1 м 3 при нормальном атмосферном давлении и температуре 20°С имеет массу 1,09 кг. При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) он переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает.

Ацетилен — самое распространенное горючее, используемое в процессах газопламенной обработки. При его использовании необходимо учитывать его взрывоопасные свойства. Ацетилен — высокое эндотермическое соединение, при разложении 1 кг С2Н2 выделяется 8373,6 кДж. Температура самовоспламенения колеблется в пределах 240-630°С и зависит от давления и присутствия в нем различных веществ.

Повышение давления существенно снижает температуру самовоспламенения. Присутствие в ацетилене других веществ увеличивает поверхность контакта и тем понижает температуру самовоспламенения.

Зависимость температуры воспламенения ацетилена от давления приведена ниже:

Температура, °С 630 530 475 350
Абсолютное давление, МПа 0,2 0,3 0,4 2,2

При взрыве ацетилена происходит резкое повышение давления и температуры, что может вызвать большие разрушения и тяжелые несчастные случаи. Ацетилен с воздухом образует взрывоопасные смеси в пределах от 2,2 до 81% С2Н2 по объему при нормальном атмосферном давлении, а с технически чистым кислородом — в пределах от 2,3 до 93%. Наиболее взрывоопасны смеси с содержанием 7-13% С2Н2. Взрыв ацетиленокислородной и ацетиленовоздушной смеси, в указанных пределах может произойти от сильного нагрева и искры.

Читайте также  Борнео или лангкави что выбрать?

Присутствие окиси меди снижает температуру самовоспламенения ацетилена до 240°С. При определенных условиях ацетилен реагирует с медью, образуя взрывоопасные соединения, вот почему категорически запрещается при изготовлении ацетиленового оборудования применение сплавов, содержащих более 70% меди.

Взрываемость ацетилена понижается при растворении его в жидкостях. Особенно хорошо он растворяется в ацетоне. В одном объеме технического ацетона при 20°С и нормальном атмосферном давлении можно растворить до 20 объемов ацетилена. Растворимость в ацетоне увеличивается с увеличением давления и понижением температуры.

Технический ацетилен получают двумя способами:

  • из карбида кальция
  • из природного газа, нефти и угля

Ацетилен, полученный из природного газа, называется пиролизным. Получение его из природного газа на 30-40% дешевле, чем из карбида кальция.

К месту сварки ацетилен доставляется в специальных стальных баллонах, заполненных пористой пропитанной ацетоном массой, под давлением 1,9 МПа.

Кроме ацетилена при сварке и резке металлов применяют и другие более дешевые и менее дефицитные горючие газы и пары горючих жидкостей. Основная область применения газов-заменителей — кислородная резка, однако в последние годы они находят широкое применение и при других видах газопламенной обработки металлов — пайке, наплавке, газопламенной закалке, металлизации, газопрессовой сварке, сварке цветных металлов и сплавов. Правильное использование газов-заменителей не ухудшает качество сварки и резки металлов, применение их дает более высокую чистоту реза при резке металлов малых толщин.

При сварке температура пламени должна примерно в два раза превышать температуру плавления металлов, поэтому газы-заменители, температура пламени которых ниже, чем у ацетилена, необходимо использовать при сварке металлов с более низкой температурой плавления, чем у сталей. При кислородной резке используются горючие газы, которые при сгорании в смеси с кислородом дают пламя с температурой не ниже 2000°С. Выбор горючего газа зависит от его теплотворной способности.

Теплотворная способность количество теплоты в килоджоулях, получаемое при полном сгорании 1 м 3 газа

Чем выше теплотворная способность газа, тем меньше его расход при сварке и резке металлов. Для полного сгорания одинакового объема различных горючих газов требуется различное количество кислорода, от этого зависит эффективная мощность пламени.

Эффективной мощностью пламени называется количество тепла, вводимое в нагреваемый металл в единицу времени

Для расчетов замены ацетилена другим газом-заменителем пользуются коэффициентом замены ацетилена.

Коэффициент замены ацетилена отношение расхода газа-заменителя V3 к расходу ацетилена Va при одинаковой эффективной тепловой мощности: ?=V3/Va

Водород

Ниже представлена лишь справочная информация о водороде, для более подробной информации читайте статью плотность, формула, масса, получение и другие характеристики водорода

Водород H2 в нормальных условиях представляет собой горючий газ без цвета и запаха. Это один из самых легких газов, он в 14,5 раза легче воздуха. Водород способен образовывать в определенных пропорциях взрывоопасные смеси с воздухом и кислородом. Поэтому при сварочных работах необходимо строго соблюдать правила безопасности труда. Получают водород разложением воды электрическим током. К месту сварки водород доставляют в стальных баллонах в газообразном состоянии под давлением 15 МПа. Баллоны для водорода окрашивают в зеленый цвет. Водород, применяемый для сварочных работ, должен удовлетворять требованиям ГОСТ 3022-80. Водородно-кислородное пламя имеет синюю окраску и не имеет четких очертаний зон пламени, что затрудняет, его регулировку.

Коксовый газ

Коксовый газ — бесцветный горючий газ с запахом сероводорода. Коксовый газ получают при выработке кокса из каменного угля, состоит он из смеси газообразных горючих продуктов водорода, метана и других непредельных углеводородов. Применяют в основном для резки сталей, сварки и пайки легкоплавких цветных металлов. Для сварки и резки применяют коксовый газ, очищенный от сернистых соединений и смолистых веществ. Для полного сгорания 1 м 3 необходимо 0,9 м 3 кислорода. К месту сварки и резки коксовый газ подают по трубопроводам под давлением 1,3-1,5 кПа.

Городской газ

Городской газ является составным горючим газом. Обычно основным компонентом городского газа является природный газ, к нему добавляют коксовый и генераторный газы. Состав городского газа непостоянен, газ типа московского имеет следующий состав: метан (70-95%), водород (до 25%), тяжелые углеводороды (до 1%), азот (до 3%), оксид углерода (до 3%), двуокись углерода (до 1%), кислород (до 0,5%). К месту сварки городской газ доставляют по трубопроводам. Как заменитель ацетилена он используется для резки сталей, сварки и пайки легкоплавких цветных металлов.

Пропан

Пропан технический — бесцветный горючий газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н8, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. При нормальных условиях пропан находится в газообразном состоянии, а при понижении температуры или повышении давления переходит в жидкое состояние. Так, при температуре 293 К пропан переходит в жидкое состояние при давлении 0,85 МПа. Испарение 1 кг жидкого пропана дает 0,53 м 3 паров.

Пропан-бутановая смесь — бесцветный горючий газ с резким запахом, является побочным продуктом при переработке нефти.

Смесь легко превращается в жидкое состояние, например при температуре 233 К пропан-бутановая смесь сжижается при атмосферном давлении. Сжиженные газы хранят только в закрытых емкостях, так как испарение жидкости происходит даже при 273 К.

Плотность пропан-бутана больше плотности воздуха, поэтому необходимо тщательно следить за герметичностью аппаратуры и коммуникаций во избежание образования взрывоопасной смеси газа с воздухом внизу помещения. Заполнение емкостей пропаном и пропан-бутановой смесью, транспортирование их, а также слив газа должны выполняться в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением», утвержденными Госгортехнадзором.

Пропан-бутановые смеси широко применяются при резке сталей, сварке и пайке легкоплавких цветных металлов, закалке, газовой сварке пластмасс. К месту сварки смесь поставляют в стальных баллонах под давлением 1,6 МПа или по газопроводам через перепускную рампу. При испарении 1 кг пропана образуется 500 дм 3 газа.

Бензин

Бензин является продуктом переработки нефти. Он представляет собой легко испаряющуюся прозрачную жидкость с резким характерным запахом. Пары бензина при сгорании в кислороде дают температуру пламени 2400-2500°С. Для очистки бензина его фильтруют через войлок. Бензин используется для кислородной резки, а также для сварки и пайки легкоплавких металлов.

Керосин

Керосин также является продуктом переработки нефти и представляет собой бесцветную желтоватую легко испаряющуюся жидкость. Керосин, применяемый для сварки и резки металлов, должен удовлетворять требованиям ТУ 38.71-58-10-90. Керосин применяют также для сварки и пайки легкоплавких цветных металлов.

Итак, мы узнали, что ацетилен является основным горючим газом для газовой сварки, но для газовой резки применяют другие, менее дорогие газы, которые позволяют осуществлять процесс резки без существенной потери производительности и качества.

Ацетилен или пропан что лучше?

Ацетилен применяется в промышленности в качестве горючего для газовой сварки и резки металлов, а также в качестве сырья для различных химических производств.

Ацетилен является химическим соединением углерода и водорода. Технический ацетилен представляет собой бесцветный газ с резким характерным запахом. Длительное вдыхание его вызывает головокружение, тошноту и может привести к отравлению. Ацетилен легче воздуха, хорошо растворяется в различных жидкостях. Особенно хорошо он растворяется в ацетоне. Ацетилен при сгорании в смеси с чистым кислородом дает пламя температурой 3050— 3150° С. Он является взрывоопасным газом.

Ацетилен взрывается при следующих условиях:

1) при повышении температуры свыше 500° С и давления свыше 1,5 ат

2) смесь ацетилена с кислородом при содержании в ней от 2,8 до 93% ацетилена взрывается при атмосферном давлении от искры, пламени, сильного местного нагрева и пр.;

3) при тех же условиях ацетилено-воздушная смесь взрывается при содержании в ней от 2,8 до 80,7% ацетилена;

4) при длительном соприкосновении ацетилена с медью или серебром образуется взрывчатая ацетиленистая медь или ацетиленистое серебро, которые взрываются при ударе или повышении температуры.

Взрыв ацетилена сопровождается резким повышением давления и температуры и может вызвать тяжелые несчастные случаи и значительные разрушения.

При помещении ацетилена в узкие каналы способность его к взрыву при повышении давления значительно понижается. В промышленности ацетилен получают в результате разложения карбида кальция водой в специальных аппаратах — ацетиленовых генераторах. Получающийся таким образом технический ацетилен обычно содержит вредные примеси: сероводород, аммиак, фосфористый водород, кремнистый водород, которые придают ацетилену резкий запах и ухудшают качество сварки. Примеси удаляют из ацетилена путем промывки в воде и химической очистки специальными очистительными веществами. Кроме того, ацетилен может содержать пары воды и механические частицы (известковая и угольная пыль). Для удаления влаги ацетилен подвергается осушке. Очистка от пыли осуществляется матерчатым фильтром. Для сварки ацетилен можно отбирать из ацетиленопровода, идущего от ацетилено-генераторной станции, либо непосредственно от однопостового генератора. Ацетилен может поставляться также в баллонах под давлением 16ат, растворенный в ацетоне.

Кроме ацетилена, при сварке и резке металлов можно применять и другие горючие газы или пары горючих жидкостей: водород, нефтяной газ, пары бензина, керосина и др.

Читайте также  Призрак или пандора что лучше?

Водород представляет собой горючий газ без цвета и запаха. Водород — один из самых легких газов. Температура пламени при сгорании в кислороде 2300° С. Водород легко загорается и в определенной смеси с кислородом или воздухом дает взрывчатую смесь, которая носит название гремучего газа. Поэтому при производстве работ по сварке и резке водородом необходимо строго соблюдать правила техники безопасности во избежание взрыва. Получают водород путем разложения воды электрическим током. Хранят его и перевозят в стальных баллонах в газообразном виде под давлением 150ат.

Пропан бутановую смесь получают при добыче и переработке естественных нефтяных газов и нефти. Температура пламени при сгорании смеси в кислороде достигает 2100° С.

При небольшом давлении смеси пропана и бутана сжижаются. Хранение и транспортировка их производятся в стальных баллонах емкостью 33 и 45 кг под давлением до 16 ат, заполняемых жидкой смесью до половины объема, так как при нагревании баллона может значительно повыситься давление, что может привести к взрыву баллона. Смесь применяется для резки, пайки, закалки, сварки свинца, алюминия и стали небольшой толщины.

Нефтяной газ представляет собой смесь горючих газов, обладает неприятным запахом, бесцветен. Получается при переработке нефти и нефтепродуктов. Температура пламени при сгорании в кислороде 2300° С. Хранится и перевозится в газообразном состоянии в баллонах под давлением 150 ат. При этом давлении он частично сжижается. В установке для резки и сварки нефтяным газом требуется испаритель. Применяется для резки, пайки, закалки, сварки стали толщиной до 2—3 мм, сварки латуни, свинца, алюминия.

Коксовый газ — газообразная смесь горючих продуктов, получающихся на коксохимических заводах при выработке из углей кокса. Температура пламени при сгорании в кислороде — около 2000° С.

Доставляется к месту сварки по газопроводу или в баллонах под давлением 150ат. Коксовые газы загрязнены цианистыми соединениями, которые могут привести к отравлениям. Поэтому перед применением их тщательно очищают. Применяется для резки, пайки и сварки легкоплавких металлов.

Метан при нормальной температуре и давлении представляет собой бесцветный газ. Метан в больших количествах находится в естественных газах, где содержание его доходит до 95—98%, температура пламени при сгорании в кислороде 1850° С для дашавского и 2000° С для саратовского газа.

На места потребления природные газы, как правило, подаются по трубопроводам и сравнительно редко производится транспортировка в газообразном состоянии в баллонах под давлением 150ат. Применяется для сварки легкоплавких металлов, резки и пайки.

Городской газ (московский) является смесью коксового, нефтяного и природных газов. Получается при газификации твердого топлива. Температура пламени при сгорании в кислороде — около 2000° С.

На места потребления для резки и сварки легкоплавких металлов подается по газопроводам или в сжатом виде в баллонах под давлением 150ат.

Бензин представляет собой легко испаряющуюся прозрачную жидкость. Пары бензина при сгорании в кислороде дают температуру 2400° С. Бензин получается при переработке нефти. Хранится и перевозится в жидком виде в сосудах при атмосферном давлении. Для сварки и резки применяется специальная аппаратура. Бензин чаще применяется для резки, чем для сварки.

Керосин для газопламенной обработки используется, как и бензин, в виде паров. С этой целью применяются специальные горелки и резаки, снабженные испарителями. Керосинокислородное пламя имеет более низкую температуру (2700°С), чем бензинокислородное. Тем не менее керосин широко применяется при газовой резке.

Следует иметь в виду, что все рассмотренные газы, а также пары бензина являются взрывоопасными.

Заменители ацетилена и экономический эффект

Замена ацетилена более дешевыми и недефицитными горючими газами и жидкими горючими в целях газопламенной обработки металлов и некоторых неметаллов является одним из актуальных вопросов для промышленности. Кроме экономической эффективности, в ряде случаев достигается улучшение и других показателей процесса: например, более высокая чистота резов на малых толщинах, лучшее, качество пайки при тонкостенных деталях и т. д.

Наилучшими заменителями ацетилена являются сжиженные нефтяные газы — пропан, бутан и их смеси, а также природные газы.

Основной областью применения газов-заменителей является кислородная разделительная резка, но в последние годы происходит широкое внедрение их в производство для выполнения и других газопламенных работ: пайки, закалки, гибки, правки, очистки поверхности металла, металлизации и напыления неметаллов. Успешно решена учеными и работниками производства задача по замене ацетилена пропан-бутаном и природным газом при сварке чугуна различной толщины, углеродистой стали толщиной до 5 мм и цветных металлов.

Ниже даются краткие сведения о газах-заменителях ацетилена и жидких горючих.

Водород является горючим газом без цвета и запаха. Промышленное получение его осуществляется несколькими способами, в частности электролизом воды; разложением водяного пара в присутствии раскаленного железа; разделением коксоеого газа путем глубокого охлаждения; из водяного газа (СО + Н20) путем конверсии СО в С02 с помощью водяного пара; термопиролизом метана или природного газа; воздействием серной кислоты на железную стружку и цинк и др. Температура сжижения водорода -253°С. Особенностью водородно-кислородного пламени является то, что оно несветящееся и его зоны не имеют четких границ.

Водород хранится и транспортируется в стальных баллонах под давлением 150 кгс/см 2 . При работе с водородом необходимо обращать внимание на герметичность всех соединений ввиду его способности проникать через малейшие неплотности и образовывать взрывчатые смеси с воздухом в широких пределах.

Природные газы, получаемые из природных газовых месторождений, состоят в основном из метана СН4 (до 98% по объему) с примесями этана, бутана, пропана, азота и углекислого газа. В обычных условиях они находятся в газообразном состоянии, не имеют цвета, но обладают легким чесночным запахом. Метан может быть также получен из коксового газа методом глубокого охлаждения. Температура его сжижения — 158° С. Большое содержание СН4 в природном газе делает его ценным горючим из-за высокой теплотворной способности; он широко применяется для промышленных и бытовых нужд. Транспортировка природного газа осуществляется по трубопроводам, а также в баллонах под давлением 150 кгс/см 2 .

Городские газы представляют собой природные газы с примесью низкокалорийных газов местных газовых заводов.

Пропано-бутановые смеси получаются при переработке естественных нефтяных газов и нефти. Обладают резким специфическим запахом. При нормальных условиях они находятся в газообразном состоянии, но при небольшом давлении сжижаются при положительной температуре. Так, при температуре +20° пропан переходит в жидкость при давлении 8,5 кгс/см 2 , а бутан при давлении 2,1 кгс/см 2 . Состав смесей в зависимости от исходного материала и технологического процесса получения может колебаться в широких пределах. В среднем для полного сгорания 1 м 3 газообразного пропан-бутана требуется около 5 м 3 02; в горелку подается 3-3,5 м 3 , т. е. по сравнению с другими горючими расход кислорода относительно высок.

При испарении 1 кг жидкого пропана получается 0,535 м 3 паров, а при испарении этого же количества бутана — 0,406 м 3 .

Транспортировка пропано-бутановых смесей производится под давлением 16 кгс/см 2 в тонкостенных стальных баллонах, изготавливаемых сваркой и окрашиваемых в красный цвет. Баллоны заполняются жидкой смесью неполностью (0,425 кг на 1 л емкости) по причине резкого возрастания упругости паров при повышении температуры. При одной и той же температуре упругость паров (давление) не зависит от количества жидкости в баллоне и будет почти неизменной, что не позволяет судить о количестве смеси в баллоне по показаниям манометра редуктора.

Для повышения отбора газа баллоны подогреваются теплой водой или соединяются в общий коллектор. Транспортировка больших количеств пропано-бутановых смесей производится в железнодорожных цистернах и автоцистернах.

Пиролизный газ представляет собой смесь газообразных продуктов термического разложения нефти, нефтепродуктов или мазута. Выход газа составляет 0,35-0,4 м. 3 на 1 кг топливной нефти. Основными составляющими его являются: метан и другие углеводороды, водород, окись углерода.

При нормальных условиях пиролизный газ бесцветен и обладает неприятным запахом. Ввиду наличия в газе сернистых примесей и смолистых веществ, требуется тщательная очистка его для предотвращения коррозии мундштуков аппаратуры для газопламенной обработки и вредного воздействия на свариваемый металл. На места потребления газ подается по трубопроводу.

Нефтяной газ по составу и теплофизическим свойствам близок к пиролизному. Он получается как побочный продукт на нефтеперерабатывающих заводах в установках для пиролиза и крекинга нефти. Кроме подачи по трубопроводам может транспортироваться также в баллонах под давлением 150 кгс/см 2 и при этом частично будет находиться в сжиженном состоянии. При отборе его из баллона в целях полного испарения жидкости и выравнивания состава газа необходимо применять особый сосуд — ресивер, из которого через регулятор давления газ поступает по шлангу в горелку или резак.

Бензин и керосин получаются из нефти и представляют собой смеси различных углеводородов. Для газопламенной обработки используются в виде паров. С этой целью горелки и резаки снабжаются специальными испарительными или распылительными устройствами, что несколько усложняет аппаратуру и делает ее менее удобной по сравнению с аппаратурой для газообразных горючих. Ввиду наличия в керосине ряда примесей, перед применением его следует профильтровать через войлок и слой каустической соды (NaOH). Транспортировка бензина и керосина производится в цистернах и стальных бочках. Основная область применения жидких горючих — резка.

Читайте также  Сертина или тиссот что лучше?

ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ВЫБОРА ГОРЮЧИХ ГАЗОВ

Выбор горючего для газопламенной обработки должен производиться применительно к конкретным условиям производства.

Несмотря на устаревшие расчетные данные (начала 80х годов), принципы подсчета и коэффициенты остаются теми же — в настоящее время изменился только масштаб цен, поэтому данные остаются актуальными.

Основными факторами, определяющими выбор того или иного горючего, являются: вид выполняемых газопламенных работ (сварка, резка, пайка и др.) и их объем (производственная программа), стоимость газокислородных смесей с использованием различных горючих, возможность бесперебойного снабжения производства отдельными горючими, а также имеющиеся в распоряжении способы их транспортировки.

Вид газопламенных работ играет главную роль при выборе горючего. Так, при большом объеме сварочно-наплавочных работ и различных толщинах основного металла требуется применение горючего с наиболее высокими теплофизическими свойствами — ацетилена.

Если необходимо произвести выбор горючего для кислородной разделительной резки — процесса, в котором температура пламени и теплотворность не играют решающей роли и мало влияют на производительность, то лучшим вариантом будет применение дешевых заменителей ацетилена, в частности, пропан-бутана и природного газа. В некоторых случаях, особенно при резке на открытом воздухе, более предпочтительными могут оказаться жидкие горючие. В тех случаях, когда на данном предприятии применяется ряд газопламенных процессов, выбирается либо какое-то одно горючее, удовлетворяющее требованиям каждого из процессов, либо применяются различные горючие соответственно видам работ.

Стоимость газокислородных смесей, т. е. суммарная стоимость выбранного горючего и кислорода, обычно сравнивается со стоимостью ацетилено-кислородной смеси, так как ацетилен до настоящего времени является основным горючим. При расчетах целесообразности применения отдельных горючих вместо ацетилена необходимо учитывать не только разницу в стоимости ацетилена и газа-заменителя (или жидкого горючего), но и коэффициент замены ацетилена в соответствии с группой процесса, а также увеличение расхода кислорода.

Способ подачи горючего к потребителю в значительной степени влияет на стоимость горючего и соответственно газокислородных смесей.

При использовании в качестве горючего ацетилена наиболее рациональной является система централизованного питания рабочих мест от стационарного генератора по газопроводу. Применение растворенного ацетилена или получение его в передвижных генераторах значительно повышает стоимость работ.

Наибольшая экономическая эффективность при использовании газов — заменителей ацетилена достигается при доставке пропан-бутана на предприятия в автоцистернах и при подаче природного газа по газопроводу.

Сравнительная стоимость некоторых горючих и кислорода приведена в табл. 5.

Ниже в качестве примера приводится расчет экономической эффективности при внедрении природного газа для разделительной резки стали вместо ацетилена. Ввиду того что скорость резки с использованием газов-заменителей при одинаковой тепловой мощности пламени такая же, как и при работе на ацетилене, расход режущего кислорода не учитывается, а подсчитывается лишь стоимость газокислородных смесей для подогревательного пламени.

Приближенно расход и стоимость газов составляет:

1) при (3 для ацетилена в среднем 1,2 и расходе его 1 м 3 стоимость ацетилено-кислородной смеси составит: 1 м 3 ацетилена стоимостью 45 коп. плюс 1,2 м 3 кислорода стоимостью 10,8 коп. — всего 55,8 коп.;

2) при р для природного газа 1,6, коэффициенте замены 1,6 стоимость горючей смеси составит: 1,6 м 3 природного газа стоимостью 3,2 коп. плюс 2,6 м 3 кислорода стоимостью 23,4 коп. — всего 26,6 коп., что примерно в два раза дешевле ацетилено-кислородной смеси.

По такой же схеме может быть подсчитан и годовой экономический эффект.

При определении эффективности применения пропан-бутановых смесей для сварки стали по сравнению с ацетилено-кислородной сваркой необходимо также учитывать несколько большую стоимость присадочного металла, так как для предотвращения окисления и обеспечения высоких механических свойств сварного шва приходится применять либо низколегированную проволоку, либо углеродистую проволоку с раскисляющими покрытиями.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Горючие газы заменители ацетилена. Водород, пары бензина и керосина, пропан-бутановая смесь, природный газ.

Горючие газы заменители ацетилена. Водород, пары бензина и керосина, пропан-бутановая смесь, природный газ.

Сравнительная характеристика различных горючих.

а) теплотворной способностью газа, т. е. количеством тепла, выделяемого при сгорании;

б) температурой пламени при сгорании в смеси с кислородом;

в) количеством кислорода, подаваемого в резак для образования подогревательного пламени;

г) удельным весом;

д) удобством и стоимостью при получении и транспортировании;

е) удобством и безопасностью и обращении и др.

В табл. 1 приведены основные физические свойства ацетилена и некоторых его заменителей.

Применение местных дешевых горючих газов вместо ацетилена значительно удешевляет стоимость газорезательных работ.

Таблица 1. Свойства ацетилена, водорода, бензина, керосина, пропан-бутана, природного газа.

Водород. Водородные баллоны. Резка водородом.

При обычных температуре и давлении водород является газом, не имеющим цвета, запаха и вкуса.

Водород в промышленности может быть получен несколькими способами:

а) электролизом воды, т. е. разложением воды электрическим током на водород и кислород;

б) разложением водяного пара в присутствии железа при высокой температуре;

в) разделением коксового газа методом глубокого охлаждения и др.

Применяемый для резки водород хранится и перевозится в баллонах такого же типа, как и кислородные, под давлением 150 кг/см 2 . Водородные баллоны окрашиваются в темно-зеленый цвет, поперек баллона делается красная надпись «ВОДОРОД». —

При сгорании в смеси с кислородом водород образует несветящееся пламя со светло-желтой окраской. Отдельные зоны его не имеют резких очертаний, что затрудняет регулировку пламени по внешнему виду.

Температура водородно-кислородного пламени 2100° С.

Водород образует с воздухом и кислородом взрывоопасные смеси. Наиболее взрывоопасным является так называемый «гремучий газ» — смесь двух объемов водорода и одного объема кислорода.

Кислородно-водородная резка имеет ограниченное применение.

В основном водород применяют для специальных работ при кислородной резке, например, при резке под водой. Кроме того, водород является хорошим заменителем ацетилена при резке листов большой толщины, так как он дает длинное пламя, хорошо подогревающее металл на всю толщину.

Горючие газы заменители ацетилена. Водород, пары бензина и керосина, пропан-бутановая смесь, природный газ.

Пары бензина и керосина.

Бензин и керосин являются продуктами перегонки нефти и при нормальных температуре и давлении находятся в жидком состоянии. Они относятся к легковоспламеняющимся жидкостям.

Для кислородной резки бензин и керосин используют в виде паров. С этой целью резаки имеют специальные испарители, подогреваемые вспомогательным пламенем, или форсунки.

При сгорании смеси паров бензина или керосина с кислородом получается светящееся подогревательное пламя, которое имеет такое же строение, как и ацетилено-кислородное.

Бензин и керосин требуют применения специальной аппаратуры для резки.

Пары бензина вредны для организма человека и взрывоопасны в смеси с воздухом или кислородом, поэтому при работе с бензином следует соблюдать меры предосторожности.

В большинстве случаев применяют пары керосина, так как керосин дешевле бензина и безопаснее в работе.

Ввиду сравнительно невысокой стоимости и удобства транспортирования, а также хорошего качества получаемого разреза бензин и керосин нашли широкое применение при кислородной резке и во многих случаях с успехом заменяют ацетилен.

Пропан-бутановая смесь.

Пропан-бутановая смесь состоит из двух газов — пропана и бутана и получается при добыче и переработке природных нефтяных газов, а также при крекинге нефти.

Весьма ценным свойством пропан-бутановой смеси является способность при обычных температурах и относительно небольших давлениях переходить из газообразного состояния в жидкое, значительно уменьшаясь при этом в объеме; иногда эту смесь называют также сжиженным газом.

Сжиженный пропан-бутан, помещенный в баллонах или цистернах, очень удобен для транспортирования.

Наиболее распространены стальные сварные баллоны емкостью 33 кг. В одном таком баллоне, заполненном на 2/3 его объема, содержится примерно 20 кг сжиженного газа. Учитывая, что из 1 кг пропан-бутановой смеси при испарении образуется около 0,5 м 3 газа, количество содержащегося в баллоне газа составит около 10 м 3 .

Для производства газорезательных работ пропан-бутановой смесью используется с небольшими изменениями аппаратура, применяемая для ацетилено-кислородной резки.

Пропан-бутановая смесь менее опасна в отношении образования взрывчатой смеси с воздухом и кислородом, чем ацетилен.

Пропан-бутановая смесь имеет резкий запах (чтобы быстро и легко обнаружить утечку сжиженных газов, к ним прибавляют сильно пахнущие вещества — так называемые одоранты).

Теплотворная способность пропан-бутановой смеси почти вдвое больше теплотворной способности ацетилена.

Единственным недостатком этой смеси является более низкая температура пламени (2100°С), что требует увеличения времени на предварительный подогрев начала реза.

Природный газ. Метан.

Природный газ состоит в основном из метана (до 99%) с небольшой примесью некоторых других газов. При нормальных температуре и давлении метан представляет собой газ без запаха и цвета. При сгорании в смеси с кислородом он развивает температуру 2000°С.

Метан хранят и перевозят в стальных баллонах под давлением 150 кг/см 2 . Баллоны окрашивают в красный цвет и на них делают надпись белыми буквами «МЕТАН».

Применяемая аппаратура при резке — та же, что и для ацетилена, только выходные отверстия мундштука, смесительной камеры и инжектора резака должны быть несколько увеличены по сравнению с отверстиями ацетилено-кислородных резаков.

Природный газ в последние годы, в связи с большим увеличением разработок его месторождений, дешевизной и получением реза более высокого качества, чем при ацетилене, становится одним из наиболее распространенных видов горючего для кислородной резки в тех районах, где осуществлена его подача по трубопроводам к местам потребления.

Статья оказалась полезной?! Поделись с друзьями.