Как работает турбокомпрессор дизельного двигателя?

Arti73rus › Блог › Устройство и принцип работы турбокомпрессора

Устройство и принцип работы турбокомпрессора
Турбокомпрессор (турбина) — механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.

Конструкция и принцип работы турбины

Классический турбокомпрессор состоит из следующих элементов:
— Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
— Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
— Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
— Вал турбины (ось) — соединяет турбинное и компрессорное колеса.
— Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
— Перепускной клапан — предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.

Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:
— Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
— Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
— Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
— Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.

Особенности эксплуатации турбин
В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации. Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.
С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях

Виды и срок службы турбокомпрессоров
Основным недостатком работы турбины является возникающий на малых оборотах двигателя эффект «турбоямы». Он представляет собой временную задержку отклика системы на изменение оборотов двигателя. Для устранения этого недостатка разработаны различные виды турбокомпрессоров:
— Система twin-scroll, или раздельный турбокомпрессор. Конструкция имеет два канала, которые разделяют камеру турбины и, соответственно, поток отработавших газов. Это обеспечивает более быстрое реагирование, максимальную производительность турбины, а также предотвращает перекрытие выпускных каналов.
— Турбина с изменяемой геометрией (с переменным соплом). Такая конструкция чаще используется на дизеле. Она предусматривает изменение сечения входа в колесо турбины за счет подвижности ее лопастей. Смена угла поворота позволяет регулировать поток отработавших газов, благодаря чему происходит согласование скорости отработавших газов и рабочих оборотов двигателя. На бензиновом двигателе турбина с изменяемой геометрией часто устанавливается на спортивных автомобилях.

К минусам турбокомпрессоров можно отнести и небольшой срок службы турбины. Для бензиновых двигателей он в среднем составляет 150 000 километров пробега машины. В свою очередь, ресурс турбины дизельного двигателя несколько больше и в среднем достигает 250 000 километров. При постоянной езде на высоких оборотах, а также при неправильном подборе масла сроки эксплуатации могут сократиться в два или даже в три раза.
В зависимости от того, как работает турбина, на бензиновом или дизельном двигателе, можно судить о ее исправности. Сигналом о необходимости проверки узла является появление синего или черного дыма, снижение мощности двигателя, а также появление свиста и скрежета. Для профилактики неисправностей необходимо вовремя менять масло, воздушные фильтры и регулярно проходить техобслуживание.

Устройство и принцип работы турбины на дизельном двигателе

Турбокомпрессор — устройство, которое позволяет примерно на 30% увеличить мощность мотора, при этом отсутствует необходимость физически увеличивать объём цилиндров. Такие агрегаты установлены практически на всех современных автомобилях, вне зависимости от типа используемого топлива. Ниже подробнее расскажем об устройстве и работе турбины дизельного двигателя, а также обрисуем минусы этого устройства и самые распространённые поломки.

Устройство и особенности турбины

Агрегат состоит из двух устройств — турбины и компрессора. Задача первой преобразовывать энергию выхлопных газов, а второго — подавать сжатый воздух в цилиндры. «Крыльчатки» — главные составляющие части этой системы, представляют собой два лопастных колеса (компрессорное и турбинное).

По своей сути компрессор — это насос, его единственная задача заключается в подаче сжатых атмосферных воздушных масс в цилиндры. Кислород необходим для сжигания топлива, чем больше его поступит, тем больше силовой агрегат сможет сжечь. В результате это приводит к значительному увеличению мощности движка без физического увеличения объёма или количества цилиндров. Система турбонаддува состоит из следующих компонентов:

  • корпус компрессора;
  • корпус турбины;
  • корпус подшипников;
  • компрессорное колесо;
  • турбинное колесо;
  • ось или вал ротора.

В турбонаддуве основным элементом выступает ротор, который защищается корпусом и крепится к специальной оси. И сам ротор, и корпус турбины изготавливаются из термостойких сплавов — это необходимо из-за того, что они находятся в постоянном контакте с газами высокой температуры.

Ротор и крыльчатка вращаются в разных направлениях с большой скоростью — такое решение обеспечивает их плотный прижим друг к другу. Принцип работы в следующем:

  1. Отработанные газы поступают в выпускной коллектор.
  2. Затем — в специальный канал, расположенный в корпусе нагнетателя, который выполнен в форме улитки.
  3. В «улитке» газы разгоняются до большой скорости и подаются на ротор.

Благодаря такому принципу и обеспечиваются вращение турбины. Что касается оси турбонагнетателя, то она крепится на специальных подшипниках скольжения и смазывается за счёт поступления жидкости из моторного отсека. Утечка смазочной жидкости предотвращается благодаря наличию прокладки и уплотнительным кольцам. Кроме того, дополнительную герметизацию обеспечивают смешанные и отдельные потоки отработанных газов и воздуха. Такое технологическое решение не обеспечивает гарантии в 100%, что выхлоп не попадёт в сжатый воздух, однако система этого и не требует.

Что ещё входит в систему турбонаддува

Турбина — сложный агрегат, инженерам потребовалось несколько десятилетий, чтобы довести систему до ума. Только на первый взгляд решение компенсировать потери КПД за счёт выхлопных газов кажется простой. Даже после создания устройства у него долгое время наблюдались определённые проблемы.

Например, не удавалось решить проблему турбоямы — задержки после нажатия на педаль газа и запуском ротора. Решение нашлось в виде использования двух клапанов. Один из них использовался для вывода излишек воздуха, а второй предназначался для выхлопных газов. Кроме того, современные турбины имеют изменённую геометрию лопаток, что серьёзно их отличает от подобных устройств второй воловины XX столетия.

Можно выделить ещё одну проблему, которая заключалась в излишней детонации — с ней тоже успешно справились современные инженеры. Проблема заключалась в том, что температура в рабочих секторах цилиндров резко увеличивалась во время нагнетания воздуха, особенно в последней стадии такта. Решение нашлось в установке интеркулера (промежуточного охладителя воздуха).

Интеркулер — устройство для охлаждения наддувочного воздуха. Он выполняет сразу две функции — препятствует детонации и не даёт уменьшиться плотности воздуха. В результате удалось сохранить работоспособность всей системы.

Также стоит отметить и другие важные составляющие турбины.

Регулировочный клапан. Отвечает за поддержание заданного уровня давления, излишки давления поступают в приёмную трубу.

Перепускной клапан. Используется для вывода излишних воздушных масс обратно во впускные патрубки — это нужно для снижения мощности при её избытке.

Стравливающий клапан. Если дроссель закрывается и нет датчика массового расхода воздуха, клапан будет возвращать излишки воздуха обратно в атмосферу.

Патрубки. Герметичные отрезки трубы. Одни используются для подачи воздуха, вторые для подачи смазочного масла.

Выпускные коллекторы. Должны быть совместимы с турбокомпрессором.

Принцип работы

Для начала нужно разобраться с двумя терминами.

Читайте также  Как выставить вмт на 406 двигателе?

Турбоподхват — состояние, при котором быстро вращающийся ротор увеличивает подачу воздуха в цилиндры, благодаря чему повышается мощность силового агрегата.

Турбояма — короткая задержка, которая возникает в работе турбины при повышении количества поступившего топлива во время нажатия педали газа. Задержка появляется из-за того, что ротору необходимо некоторое время, пока газы его не разгонят.

Турбонаддув повышает давление выхлопных газов за счёт более интенсивной работы мотора, но в то же время увеличивается и давление наддува. При достижении критических величин может произойти поломка, а потому этот процесс необходимо контролировать. За регулировку давления отвечают клапана, а мембрана и пружина следят за предельно допустимыми значениями. При достижении определённой величины мембрана открывает клапан для стравливания давления.

Работа турбины на дизельном двигателе нуждается в контроле давления, который осуществляется следующими процессами:

  • если поступило слишком много воздуха, компрессор (используя клапан) освобождается от излишков;
  • клапан стравливает давление в случаях, когда воздуха поступило слишком много — при этом агрегат работает стабильно и забирает ровно столько воздуха, сколько требуется.

Работа турбокомпрессора на дизельном двигателе

Работа осуществляется по следующие схеме:

  1. Компрессор нагнетает сжатый атмосферный воздух.
  2. Воздушная масса смешивается с топливом и поступает в цилиндры.
  3. Полученная топливно-воздушная смесь воспламеняется, что приводит поршни в движение.
  4. Параллельно с этим процессом появляются отработанные газы, которые направляются в выпускной коллектор.
  5. Скопившиеся в корпусе газы значительно увеличивают скорость.
  6. Вращение переходит (по валу) на компрессорный ротор, он втягивает новую порцию воздуха.

Получается интересное взаимодействие. Ротор вращается быстрее — больше поступает воздуха. Чем больше воздуха поступает — тем быстрее вращается ротор.

Минусы турбины на дизельном двигателе

Как и любое устройство, у турбины есть свои положительные характеристики (которые были описаны выше), так и недостатки. К минусам можно отнести в первую очередь увеличенный расход топлива, особенно это касается неправильно отрегулированных агрегатов. Второй минус — чувствительность к качеству топлива, что особенно актуально в российских условиях. Дело в том, что некачественный дизель может привести к детонации. Отметим и другие недостатки:

  • общее удорожание двигателя;
  • повышенная требовательность к моторному маслу;
  • масло и фильтры приходится менять чаще (примерно каждые 5-6 тыс. км);
  • нужно часто менять воздушный фильтр;
  • ресурс турбины на дизельном двигателе значительно ниже, чем на бензиновом (из-за более высокой температуры выхлопа);
  • средний ресурс агрегата составляет 200-250 тыс. км, после чего потребуется замена или, как минимум, капитальный ремонт;
  • достаточно сложный ремонт, провести его среднестатистическому автовладельцу самому не получится.

Однако стоит отметить, что плюсы всё-таки перевешивают минусы. В противном случае турбины не пользовались бы такой большой популярностью.

Основные неисправности — признаки и причины

Сразу стоит оговориться, что основная причина поломок — это несвоевременное техническое обслуживание агрегата, его рекомендуется проводить минимум один раз в год. Следующая причина — низкое качество масла, либо его несвоевременная замена. Третья — попадание в устройство посторонних предметов (например, мелких камушков). Наконец, четвёртая — банальный износ отдельных компонентов турбины, ведь у каждого оборудования есть свой срок эксплуатации. Теперь опишем признаки, которые могут говорить о неисправности.

Чёрный дым из выхлопной трубы. Топливо сгорает в интеркулере или нагнетающей магистрали. Скорее всего — неисправность системы управления.

Сизый дым. Возможно, из-за нарушения герметизации турбины масло просачивается в камеру сгорания.

Белый дым. Сливной маслопровод загрязнился, потребуется его чистка.

Повышенный расход топлива. Воздух не доходит до компрессора.

Увеличен расход масла. Нужно проверить стыки патрубков — возможно, нарушена герметичность.

Уменьшение динамики разгона. Скорее всего вышла из строя система управления, из-за чего возник недостаток кислорода.

Посторонний свист, скрежет или шумы. Это может быть изменение зазора ротора, дефект в корпусе, утечка воздуха между двигателем и турбиной, либо загрязнение маслопровода.

Всегда нужно соблюдать правила эксплуатации агрегата — это снизит вероятность появления поломки и продлит срок службы устройства. Следует придерживаться нескольких простых правил:

  • следите за качеством топлива и масла;
  • не забывайте вовремя менять масло и фильтры;
  • начинайте движение только после того, как движок прогреется;
  • после прекращения движения нужно дать мотору поработать на холостых, а не сразу его выключать.

И, конечно же, следует регулярно проходить ТО.

Что делать, если турбина сломалась

Если обнаружилась неисправность первое, что нужно сделать — провести диагностику. Причём чем раньше, тем лучше. Если вовремя заменить неисправную деталь, удастся избежать более серьёзных проблем. Например — зачастую автовладелец не обращает внимание на лёгкое постукивание думая, что это не имеет значения, в результате через какое-то время приходится покупать новую турбину, хотя изначально можно было обойтись небольшим ремонтом.

Следует отметить, что недостаточно знать, как работает турбина на дизеле — нужно идеально разбираться во всех её компонентах. Только обладая соответствующими навыками, опытом и оборудованием получится провести качественный ремонт. Именно поэтому рекомендуем не пытаться самостоятельно отремонтировать агрегат (можно сделать только хуже), а обратиться в компанию «Дизель-Мастер». Специализируемся на ремонте турбин с 1998 года, а потому знаем о них всё.

5 причин обратиться именно к нам:

  1. В наличие высокоточное диагностическое оборудование (стенды Bosch и Delphi);
  2. В штате — специалисты с большим практическим опытом подобных работ.
  3. Быстрый ремонт в течение дня без потери в качестве.
  4. Используем только оригинальные комплектующие и ремкомплекты.
  5. Предоставляем официальную гарантию на комплектующие и выполненный ремонт.

При первых признаках дефекта — обратитесь к нам. Установим причину неисправности и предложим эффективный, экономичный способ её решения.

Принцип работы турбокомпрессора дизельного двигателя

Турбокомпрессор дизельного мотора выполняет важную функцию: нагнетание под давлением воздушного потока в цилиндры двигателя. Чем больше будет проходить воздуха, тем выше показатель мощности агрегата. Устройство состоит из двух элементов:

  • турбина;
  • компрессор.

Конструкция турбины представляет собой прочный корпус, внутри которого расположен ротор. Они изготавливаются из прочных материалов, так как подвергаются воздействию высоких температур.

Признаки возникновения проблем с турбиной дизельного двигателя

Как и любая составляющая агрегата, турбина повергается физическому износу и периодически ломается. При возникновении любых неполадок целесообразно обратиться к специалистам, чтобы избежать более серьёзных проблем.

Турбина – технически сложный аппарат, который нагнетает мощность. При появлении проблем наблюдаются следующие признаки:

  • увеличение расхода или большая утечка масла;
  • изменение цвета дыма;
  • появление шума в дизельном моторе;
  • значительное увеличение объёма дыма;
  • регулярные или постоянные перегревы;
  • снижение показателя мощности;
  • увеличение расхода топлива;
  • уменьшение скорости набора оборотов;
  • появление токсичного запаха;
  • наличие свиста и других посторонних шумов в турбине и т.д.

Как работает турбокомпрессор дизельного двигателя

Появление любого признака является серьёзным поводом для профессиональной диагностики мотора и проведения требуемых ремонтных работ.

Перечень основных проблем турбины

На первоначальном этапе при возникновении любых проблем с устройством следует выяснить причины их формирования. С технической точки зрения, турбина – надёжное устройство, которое рассчитано на длительный период эксплуатации.

При фактической работе оно тесно взаимодействует и подвергается влиянию многих систем дизельного автомобиля или другого агрегата. Поэтому состояние турбины зависит от степени исправности других узлов, деталей и механизмов.

Устройство особенно нуждается в безупречном функционировании систем топлива, смазки, охлаждения, вентиляции и т.д. при высоких нагрузках.

Основная проблема турбины дизеля заключается в утечке и увеличении расхода масла. Если горюче-смазочный материал заканчивается, то основные рабочие поверхности начинают стираться. Аппарату достаточно проработать несколько секунд без масла, чтобы полностью выйти из строя. В таких ситуациях ремонт невозможен и возникает необходимость в замене турбины, что сопровождается внушительными материальными затратами.

Турбокомпрессор дизельного мотора

Специалисты выделяют ещё три проблемы, которые приводят к выходу из строя аппарата:

  • Грязное масло. Любое смазочное вещество, которое используется в двигателе внутреннего сгорания, обладает конкретным сроком службы. При работе масло подвергается загрязнению сажей, которая образуется в результате сгорания топлива и самого ГСМ.
  • Масляный фильтр не способен полностью очистить смазочное вещество. Рекомендуется менять масло каждые 10 000 км пробега, если речь идёт о дизельном автомобиле.
  • Недостаточный объем масла, которое пропускается через турбину. В турбокомпрессоре, где корпус является неохлаждаемым, смазочный материал выполняет дополнительную функцию: отведение тепла от турбинных подшипников и вала со стороны выхлопного коллектора. Если проходимость масла уменьшается, то резко возрастает температура внутри корпуса. В таких ситуациях ГСМ сворачивается.

Причинами недостаточного пропускаемого объёма масла являются поломки в масляном насосе, редукционном клапане или возникновение дефектов на трубках подачи и отвода смазочного вещества. Специалисты рекомендуют использовать специальные смазочные составы, которые предназначены именно для турбин дизельного двигателя.

Попадание инородных предметов в зону всасывания. Нередко устройство выходит из строя из-за попадания пыли, насекомых и т.д. в колесо компрессора. Происходит снижение производительности. При попадании крупных предметов, например, камня, возникают более серьёзные повреждения. При этом турбина начинает издавать нехарактерные звуки и повергается разрушению.

При поломке устройства не всегда необходимо осуществлять его замену. Во многих случаях сформировавшуюся проблему можно легко решить. Для этого необходимо своевременно обратиться к специалистам и регулярно осуществлять профилактический осмотр.

Плюсы и минусы механических автомобильных турбин

Для оптимизации показателей мощности двигателя используют механические компрессоры, электрические турбины и турбо-нагнетатели, функционирующие от отработанных газов. Это самый первый вид, применяемый в автомобилестроении, он был предложен конструкторами компании «Мерседес». Компрессор подключается к двигателю: вал нагнетателя и вращающийся коленчатый механизм объединяются с помощью ременной передачи.

Читайте также  Если зажаты клапана как будет работать двигатель?

После запуска двигателя создающееся вращение затрагивает и компрессор, в результате последний тоже начинает функционировать – направляет воздух в цилиндры. Такой вид устройства не может обеспечить более 20 тыс. оборотов в минуту.

  • простая конструкция, отличающаяся высокой надёжностью;
  • если агрегат точно настроен, он не требует специфического ухода;
  • отсутствует эффект турбоямы (сбой в ходе ускорения автомобиля на низких оборотах);
  • работа не сопровождается чрезмерным нагреванием;
  • неограниченный эксплуатационный ресурс;
  • возможность самостоятельной установки.

Главным недостатком механической турбины является невозможность увеличения мощности двигателя авто выше чем на 10%, по уровню производительности эта конструкция значительно уступает электрическим и газовым нагнетателям. Решение постепенно устаревает, его всё реже используют при конвейерном производстве.

Турбо-нагнетатель – классический метод усовершенствования

Устройство использует отработанные газы, является самым распространённым и эффективным видом турбин. Главным его достоинством является высокая производительность – верхняя планка оборотов вала составляет 200 тыс. в минуту.

В глушителе происходит перемещение от двигателя отработанных газов, они поступают под давлением. Благодаря присутствию специального отвода потоки направляются на крыльчатку турбины, вызывая её раскручивание. На этом же валу присутствует ещё одна крыльчатка, она находится с другой стороны, при её раскручивании происходит нагнетание воздушных масс в цилиндры двигателя.

Так как решение продуцирует высокие показатели оборотов вала, работа устройства происходит в условиях высоких температур, выхлоп может нагреваться до 900-950°С. Экстремальные рабочие условия объясняют ограниченность эксплуатационного ресурса турбины.

После 150-200 км в таком режиме необходима её замена, ремонт потребует изрядных финансовых вложений. Для смазки подшипников вала используется моторное масло, когда турбина достигает больших оборотов, оно проникает в камеру, что вызывает увеличенный расход.

  • он не объединяется с двигателем;
  • показывает высокую производительность на фоне механических конкурентов;
  • имеет повсеместную распространённость, нет проблем с поиском запчастей.
  • небольшой эксплуатационный срок;
  • усиленный расход моторного масла;
  • использование сопровождается турбоямами;
  • функционирование в высокотемпературном режиме.

Автомобильный турбокомпрессор в разборе

Решение предъявляет высокие требования к качеству топлива, если оно установлено на старой модели автомобиля, необходим турботаймер – он контролирует период остывания после работы. Несмотря на обилие проблем, сопровождающих эксплуатацию турбо-нагнетателя, он востребован из-за существенного увеличения мощности двигателя. Сейчас крупные автомобильные концерны, прежде всего, немецкие, заняты усовершенствованием его конструкции.

Разница между нагнетателем и компрессором

Оба решения выполняют одну функцию – способствуют всасыванию воздуха и направляют его в камеру сгорания автомобильного двигателя. Отличие заключается лишь в системах их питания.

Работа турбокомпрессора инициируется ременным приводом, благодаря ему крутящий момент передаётся турбине от двигателя. Процесс аналогичен тому, как силовой агрегат за счёт системы роликов и ремней передаёт крутящий момент электрогенератору, заряжающему аккумулятор. Турбины в виде наддува, нагнетателей функционируют на базе выхлопных газов: кислород под давлением направляется в камеру сгорания, провоцируя усиление крутящего момента двигателя.

Особенности электрической категории турбин

Перспективная разработка, только начинающая продвижение в отрасли. Её активно берут на вооружение ведущие мировые производители авто, согласно прогнозам, в течение ближайшего десятилетия электрические вариации способны завоевать весь рынок. Секретом успеха является объединение сильных сторон механических вариаций и газовых нагнетателей – это использование технологий компрессора наряду с высокой производительностью.

Принцип работы электротурбины основывается на применении мощного электродвигателя, выдающего высокие обороты – на уровне 200-300 тыс. в минуту. Это средние показатели, разработаны типы, продуцирующие до 1 млн. оборотов в минуту. Устройство внедряется в турбину, что ведёт к существенному увеличению мощности двигателя авто.

Важно, что производительность связки не будет зависима от выхлопного потока и коленчатого вала, притом встраиваемые электродвигатели обладают неиссякаемым ресурсом. Преимущества турбины:

  • высокая результативность работы;
  • вариативность монтажа;
  • нейтрализация эффекта турбоямы;
  • относительная самостоятельность в автомобильных системах.

Единственным значимым недостатком является тот факт, что работа турбины сопровождается интенсивным потреблением электричества, в большинстве случаев ресурсов штатного генератора здесь не хватает. Если не хочется уменьшить ожидаемую производительность турбины, установка маломощного электродвигателя не станет решением проблемы, выходом может послужить внедрение дополнительных генераторов.

Вне зависимости от вида для увеличения срока службы необходимо регулярно проводить диагностику турбин, важна своевременная замена воздушного фильтра и моторного масла – даже малейшие загрязнения способны подорвать работоспособность решения. Это правило особенно актуально на фоне некачественного топлива, предлагаемого в отечественном сегменте.

Устройство турбины дизельного двигателя

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. Моторы с турбонаддувом в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного ДВС под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Устройство турбины

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи моторного масла из системы смазки двигателя. С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.

Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.

От чего зависит срок службы турбонагнетателя дизельного ДВС. Особенности и рекомендации касательно эксплуатации и ремонта турбин с изменяемой геометрией.

Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.

Что представляет собой двигатель с наддувом и чем отличается от атмосферного. Основные преимущества и недостатки турбированных ДВС. Какой мотор выбрать.

Выбор механического нагнетателя или турбокомпрессора. Конструкция, основные преимущества и недостатки решений, установка на атмосферный тюнинговый мотор.

Принцип работы турбины на дизельном двигателе

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Об истории изобретения и внедрения турбонаддува

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Читайте также  3s fe какое масло лить в двигатель?

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – трактор К-701 «Кировец» с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Устройство системы турбонаддува

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Как работает турбина дизельного двигателя

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

Применение турбонаддува в мировом машиностроении

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.