Для чего нужны вкладыши в двигателе?

Вкладыши коленвала: борьба с трением и надежная опора коленчатого вала

Во всех двигателях внутреннего сгорания коленчатый вал и шатуны вращаются в специальных подшипниках — вкладышах. О том, что такое вкладыш коленвала, какие функции он выполняет, каких типов бывают вкладыши и как они устроены, а также о правильном подборе новых вкладышей для ремонта — читайте в статье.

Что такое вкладыши коленвала?

Вкладыш коленчатого вала — деталь кривошипно-шатунного механизма двигателя внутреннего сгорания, подшипник скольжения, снижающий потери на трение и заклинивание деталей в местах контакта коленчатого вала с постелью блока двигателя и коленчатого вала с шатунами поршней. Применение подшипников скольжения обусловлено сложными условиями и высокими нагрузками, при которых подшипники качения (шариковые или роликовые) работали бы неэффективно и имели бы малый ресурс. Сегодня на большинстве силовых агрегатов используются вкладыши, и только на некоторых маломощных одно- и двухцилиндровых моторах в качестве опор коленвала находят применение подшипники качения.

На вкладыши коленвала возложено несколько основных функций:

• Снижение сил трения в месте контакта коленчатого вала, опор блока цилиндра и шатунов;
• Передача сил и моментов, возникающих в процессе работы двигателя — от шатунов на коленвал, от коленвала на блок двигателя и т.д.;
• Правильное распределение масла (образование масляной пленки) по поверхностям трущихся деталей;
• Правильная центровка и позиционирование деталей друг относительно друга.

Вкладыши коленвала играют важную роль в работе силового агрегата, но при этом они довольно просты в конструктивном плане.

Типы и характеристики вкладышей коленчатых валов

Подшипники скольжения коленвала делятся на типы по месту установки, назначению и ремонтным размерам.

По месту установки вкладыши бывают двух типов:

Коренные подшипники скольжения устанавливаются в постели коленвала в блоке двигателя и охватывают коренные шейки коленвала, обеспечивая его свободное вращение. Шатунные подшипники скольжения устанавливаются в нижней головке шатуна и охватывают шатунную шейку коленчатого вала.

Также вкладыши делятся на две группы по назначению:

• Обычные — обеспечивают только снижение сил трения в местах контакта деталей;
• Фиксирующие коренные — дополнительно обеспечивают фиксацию коленчатого вала в постели, предотвращая его осевые смещения.

Обычные подшипники скольжения представляют собой плоские тонкостенные полукольца. Фиксирующие подшипники могут выполняться в виде упорных полуколец (которые используются в комплекте с плоским вкладышем) и вкладышей с буртами; полукольца устанавливаются в торце двигателя, буртовые вкладыши монтируются на одной или двух опорах постели коленчатого вала.

Вкладыши коленвала в процессе эксплуатации изнашиваются и подлежат замене, износу подвержены и шейки коленчатого вала, что приводит к увеличению зазора между трущимися деталями. Если установить новые вкладыши той же толщины, что и старые, то зазор останется слишком большим, что чревато возникновением стука и еще более интенсивным износом. Чтобы избежать этого, используются вкладыши так называемых ремонтных размеров — несколько увеличенной толщины, компенсирующей износ шеек коленвала. Новые вкладыши имеют размер 0,00, ремонтные вкладыши выпускаются с увеличением толщины на 0,25, 0,5, 0,75, 1,0, 1,25, 1,5 мм, такие вкладыши обозначаются соответственно +0,25, +0,5 и т.д.

Конструкция вкладышей коленвала

Подшипник скольжения коленчатого вала — составной, содержит два металлических плоских полукольца, полностью охватывающих шейку коленвала (сверху и снизу). В этой детали выполняется несколько элементов:

• Отверстия (одно или два) для пропуска масла в масляные каналы в коленчатом валу и шатуне;
• Замки в виде шипов или пазов под штифты для фиксации подшипника в опоре постели коленвала или в нижней головке шатуна;
• Продольная канавка для подачи масла в отверстие (выполняется только на вкладыше, расположенном со стороны канала — это нижний коренной вкладыш и верхний шатунный вкладыш);
• В буртовых упорных вкладышах — боковые стенки (бурты) для фиксации подшипника и ограничения осевого перемещения коленчатого вала.

Вкладыш — это многослойная конструкция, основу которой составляет стальная пластина с нанесенным на ее рабочую поверхность антифрикционным покрытием. Именно данное покрытие обеспечивает снижение трения и длительный срок службы подшипника, оно изготавливается из мягких материалов и, в свою очередь, также может быть многослойным. Покрытие вкладыша за счет меньшей мягкости поглощает микроскопические частицы износа коленвала, предотвращает заклинивание деталей, образование задиров и т.д.

По конструкции вкладыши коленчатого вала делятся на две основные группы:

Наиболее просто устроены биметаллические подшипники. Их основу составляет стальная полоса толщиной 0,9-4 мм (в зависимости от типа и назначения детали, коренные подшипники — толще, шатунные — тоньше), на которую нанесен антифрикционный слой толщиной 0,25-0,4 мм. Данный слой изготавливается из медно-свинцово-оловянного (бронзового), медно-алюминиевого, медно-алюминиево-оловянного, алюминиево-кремниево-свинцового, алюминиево-кремниево-свинцово-оловянного или иных мягких сплавов с содержанием алюминия и меди до 75%, и олова (которое выступает в роли твердого смазочного материала) до 25%, также могут содержать небольшое количество никеля, кадмия, цинка и других металлов.

Триметаллические вкладыши помимо основного антифрикционного покрытия имеют покровный слой толщиной 0,012-0,025 мм (12-25 мкм), обеспечивающий защитные свойства (борется с коррозией и чрезмерным износом основного слоя) и улучшающие антифрикционные качества подшипника. Данное покрытие изготавливается из свинцово-оловянно-медного сплава с содержанием свинца 92-100%, олова до 12% и меди не более 3%.

Также в подшипниках скольжения могут присутствовать дополнительные слои:

• Верхний защитный слой из олова — чисто оловянное покрытие толщиной всего 0,5-1 мкм, обеспечивающее защиту от коррозии, жира и загрязнения во время транспортировки, установки и приработки вкладыша;
• Нижний защитный слой из олова — такой же слой, нанесенный с наружной стороны вкладыша (обращенной к опорам коленвала или внутренней части головки шатуна);
• Никелевый подслой (никелевый барьер, прокладка) — тонкий, не более 1-2 мкм слой никеля между основным антифрикционным покрытием и покровным слоем. Данный слой предотвращает диффузию атомов олова из покровного слоя в основной, что обеспечивает постоянство химического состава основного антифрикционного покрытия. При отсутствии никелевого барьера в основном покрытии может увеличиваться концентрация олова, что приводит к негативным изменениям характеристик подшипника.

Рассмотренная структура подшипников скольжения не является стандартом, многие производители предлагают свои уникальные схемы и конструкции. Например, основной антифрикционный сплав может наноситься на стальную основу не непосредственно, а через дополнительный подслой из алюминиевого или медного сплава, покровный слой может иметь разнообразный состав, в том числе без содержания свинца, и т.д.

Вопросы выбора и замены вкладышей коленвала

При подборе подшипников скольжения необходимо отталкиваться от модели двигателя, износа сопряженных деталей и наличия ремонтных вкладышей. Как правило, вкладыши изготавливаются для одного модельного ряда или даже одной модели двигателя, поэтому заменить их деталями от другого мотора нельзя (за редким исключением). Также нельзя использовать вкладыши без учета износа шеек коленвала, в противном случае ремонт обернется еще большими проблемами.

Перед выбором ремонтного размера подшипников нужно определить износ шеек коленвала и других сопряженных деталей (постели, головки шатуна, хотя они меньше подвержены износу). Обычно износ шеек происходит неравномерно, какие-то из них изнашиваются более интенсивно, какие-то — менее, однако для ремонта покупается комплект одинаковых вкладышей, поэтому все шейки должны стачиваться до одного размера. Выбор величины, до которой будут стачиваться шейки коленвала, зависит от наличия подшипников тех или иных ремонтных размеров, подходящих для данного конкретного двигателя. Для моторов с небольшим пробегом выбираются ремонтные размеры +0,25 или +0,5, для моторов со значительным пробегом может потребоваться стачивание до ремонтного размера +1,0, в старых моторах и того больше — вплоть до +1,5. Поэтому для новых двигателей обычно выпускаются вкладыши трех-четырех ремонтных размеров (до +0,75 или +1,0), а для старых можно найти вкладыши вплоть до +1,5.

Ремонтный размер вкладышей коленвала должен быть таким, чтобы при сборке двигателя между шейкой коленвала и поверхностью подшипника оставался зазор в пределах 0,03-0,07 мм. При меньшем зазоре высок риск заклинивания, при большем — повышается биение коленвала, увеличивается интенсивность износа деталей и общая шумность силового агрегата.

При правильном выборе подшипников скольжения для коленчатого вала двигатель даже при большом пробеге будет работать качественно и эффективно на различных режимах.

haer › Блог › Подшипники двигателя

В данной статье освещается общая теория о провороте вкладышей двигателя.
Что такое вкладыши двигателя?

Прежде, чем приступить к теме заметки, уточним понятия, с которыми мы собираемся оперировать, что бы даже человек далёкий от техники мог представить, о чём идёт речь. Все сталкивались в быту с вращающимися валами, колёсами тех или иных механизмов и знают, что лёгкость вращения этих механизмов обеспечивается наличием в них подшипников.
В двигателях внутреннего сгорания есть вращающаяся, тяжело нагруженная деталь — коленчатый вал. Он тоже устанавливается на подшипники. Из конструктивных соображений чаще всего используются подшипники скольжения. Конструкция подшипником может быть весьма разнообразной, но совершенствование конструкций двигателей привело к тому, что в настоящее время практически повсеместно в качестве подшипников применяется стальной лист с нанесённым на него антифрикционным покрытием определённого размера и формы. Такие детали называются вкладышами.
Вкладыши устанавливаются в специально подготовленные для них места, называемые постелями, в строго фиксированном состоянии. Необходимость фиксации вкладышей связана во первых с тем, что на вкладышах имеются отверстия для прохода смазочного масла и они должны совпадать со сверлениями в постелях. А во вторых — что бы обеспечить трение по специально подготовленным для этого поверхностям.

Чтобы понять причины проворачивания вкладышей, разберем два основных вопроса:

— что заставляет вкладыши проворачиваться

— что удерживает вкладыши от проворота

1. Из курса физики мы знаем, что сила трения возникает при скольжении двух тел относительно друг друга при наличии нагрузки. Величина сил трения зависит от величины нагрузки на пару трения и от величины коэффициента трения. Для снижения сил трения используются антифрикционные материалы, обладающие низким коэффициентом трения.

В двигателях конструктивно этот вопрос решён нанесением антифрикционного материала на поверхность вкладыша. Коленчатый вал двигателя совершает относительно вкладышей вращательное движение и в результате действия сил трения возникает момент трения, пытающийся провернуть вкладыши относительно посадочных мест.

2. От проворачивания и от смещения в посадочных местах вкладыши удерживаются «усиком» на каждом вкладыше. Все вкладыши в «постели» удерживаются за счёт натяга, с которым устанавливается вкладыш. Величина натяга задаётся конструктивно.

Для обеспечения нужного натяга вкладыш

и разбиваются на размерные группы. Размерная группа вкладыша, присутствующая в маркировке, выбирается исходя из конкретного значения диаметра «постели» под вкладыш

Причины проворачивания вкладышей двигателя

Первая — повышенный момент трения, который стремится провернуть вкладыши и пониженное усилие, удерживающее вкладыши на месте (вкладыш установлен с недостаточным натягом). Как правило, на машинах серийного производства случаи с нарушением натяга встречаются очень редко. Обычно нарушение натяга возникает после неквалифицированного ремонта двигателя, когда неправильно выполнялся подбор вкладышей. Под действием неравномерных нагрузок ослабленная посадка вкладыша приводит к его вибрации, нарушению смазочной плёнки и к местным прихватываниям. В результате вкладыш начинает проворачиваться, а удерживающий усик не в состоянии противостоять проворачивающему моменту на вкладыше.

Читайте также  Прогорел поршень на дизельном двигателе причины

Вторая причина проворачивания вкладышей двигателя это повышенный момент трения, связанный с режимом работы подшипников. При работе двигателя на расчётных режимах вкладыши работают в условиях жидкостного трения. Между рабочей поверхностью вкладыша и шейкой вала возникает масляная плёнка, предотвращающая прямое взаимодействие деталей. Момент трения в подшипнике минимальный. Для двигателей мощность до 200 л. с. окружные усилия на вкладыш составляют примерно 0,1кгс – 1кгс. Величина силы трения пропорциональна нагрузке, и это при постоянном коэффициенте трения. Иногда целостность масляной плёнки может нарушаться и коэффициент трения начинает расти. Тогда, даже при постоянной нагрузке, увеличивается проворачивающий момент и создаются условия для проворачивания вкладышей. Повышенная нагрузка уменьшает толщину масляной плёнки, увеличивая риск её разрушения. При этом выделяется больше тепла, что ведёт к росту локальных температур в зоне трения. Происходит разжижение смазки, что приводит к дальнейшему снижению толщины масляной плёнки и увеличению вероятности появления прихватов в трущейся паре.

Процесс образования масляной пленки между двумя контактирующими и движущимися относительно друг друга деталями зависит от скорости взаимного перемещения. В таких случаях говорят о гидродинамическом режиме трения, когда масляная плёнка затягивается в зазор между трущимися деталями, разъединяя детали. С увеличением скорости плёнка затягивается в зазор эффективней (плёнка становится более толстой). Но рост скорости приводит к росту величины количества тепла, выделяющегося при трении. Температура масла повышается, и оно становится более жидким. Это приводит к снижению толщина плёнки, вследствие разжижения масла.

Коэффициент трения зависит от шероховатости и точности геометрии контактирующих поверхностей и наличия посторонних частиц в масле (неровности поверхности, посторонние частицы, нарушают целостность плёнки, приводя к появлению зон работающих в режиме полусухого трения). Эти факторы особенно сильно сказываются на начальном периоде эксплуатации машины, во время приработки деталей. За этот период эксплуатации происходит срабатывание микронеровностей, разрушающих масляную плёнку. В этот момент трущиеся пары наиболее чувствительны к перегрузкам.

На проворачивающем моменте сказывается вязкость масла. Чем она больше, тем больше сила (момент) трения. В тоже время с увеличением вязкости, растёт толщина масляного клина в трущейся паре. С другой стороны вязкое масло не может поступать в нужных объёмах в зону трения, и это приводит к снижению толщины масляного клина вплоть до его местного разрушения. Совокупность разно направленных процессов, связанных с вязкостью масла, затрудняет однозначную трактовку влияния масла на проворачивание вкладышей. В этом случае определяющим становится такое индивидуальное свойство марки масла как смазывающая способность (прочность сцепления масла с металлом).

Теперь, зная причины проворачивания вкладышей двигателя, Вы сможете представить факторы риска появления задира и проворота вкладышей при использовании техники при длительной нагрузке на малых скоростях, непрогретом масле или недавно вышедшей из ремонта.
всем удачи!

Почему проворачивает шатунные вкладыши или вкладыши коленвала

Вкладыши шатунов или коленвала являются подшипниками скольжения, на которые дополнительно подается моторное масло из системы смазки двигателя. Данное решение позволяет нагруженным деталям свободно и легко перемещаться, при этом достигается такое сопряжение нагруженных элементов, в котором отсутствуют зазоры и люфты. Под такими подшипниками скольжения следует понимать высокопрочный стальной лист особой формы, на который нанесено специальное антифрикционное покрытие.

Проворачивание шатунных вкладышей или вкладышей коленвала является серьезной неисправностью, которую необходимо устранять незамедлительно. Чаще всего водитель узнает о возникшей проблеме благодаря появлению отчетливого характерного шатунного стука или стука коленчатого вала двигателя. Дальнейшая эксплуатация ДВС, в котором провернут вкладыш, крайне не рекомендуется, так как поломки данного рода причиняют значительный ущерб не только сопряженным деталям, но и другим узлам силового агрегата. Далее мы поговорим о том, что делать, если провернуло шатунный вкладыш, какой может быть причина и последствия в результате такой поломки.

Почему проворачивает вкладыши?

Вкладыши в двигателе установлены в специальные установочные места (постель вкладыша). Установка предполагает особую фиксацию, так как вкладыши имеют в своем теле отверстия, что позволяет подавать на них моторное масло. Указанные отверстия должны четко совпадать с отверстиями, которые высверлены в самих деталях для прохода смазки. Также фиксация вкладыша необходима с учетом того, что во время работы двигателя возникает трение по поверхностям сопряженных элементов.

С учетом вышеприведенной информации становится понятно, что если провернуло шатунный вкладыш, причина может заключаться в следующем:

  • недостаточная фиксация вкладыша;
  • сильное трение по поверхности вкладыша;

Как известно, трение возникает в результате скольжения двух тел по отношению друг к другу при наличии определенной нагрузки. Общая величина силы трения будет зависеть от величины нагрузки на трущуюся пару, а также от коэффициента трения. Для того чтобы снизить силу трения при изготовлении деталей применяются специальные антифрикционные материалы, которые имеют низкий коэффициент трения.

Что касается вкладыша, антифрикционный материал наносится на его поверхность. Коленвал по отношению к вкладышам совершает вращательное движение, в месте сопряжения вкладыша и коленчатого вала возникает сила трения, которая стремится провернуть вкладыши по отношению к их установочным местам. Для защиты от проворачивания и смещения вкладыш удерживает специальный усик. Также при установке сами вкладыши вставляются с определенным натягом, величина которого рассчитана конструкторами того или иного ДВС.

Становится понятно, что избыточное трение или недостаточно надежная фиксация (слабый натяг), являются основными причинами, по которым не удается удержать вкладыш на его посадочном месте. Отметим, что во время изготовления двигателя на заводе недостаточный натяг вкладышей при сборке ДВС встречается крайне редко. Чаще проблемы с коренными или шатунными вкладышами появляются после того, как двигатель ремонтировался. Другими словами, неправильный подбор ремонтных вкладышей и другие дефекты, которые не позволяют добиться необходимого натяга, приводят к проворачиванию. Так как на КШМ воздействуют неравномерные нагрузки, вкладыши с ослабленной посадкой начинают вибрировать, масляная пленка на их поверхности разрушается, вкладыш может «прихватить». В такой ситуации проворачивание неизбежно, так как фиксирующий усик попросту не способен противостоять моменту проворачивания на самом вкладыше.

Как уже было сказано, еще одной причиной проворачивания вкладышей двигателя является превышенный момент трения, то есть нарушаются расчетные условия работы самих подшипников скольжения. Нормальная работа вкладышей предполагает так называемое жидкостное трение, то есть поверхность вкладыша и шейку коленчатого вала разделяет масляная пленка. Это позволяет избежать прямого контакта нагруженных деталей, обеспечивает необходимую смазку и охлаждение, минимизирует трение.

Вполне очевидно, что если масляная пленка будет иметь недостаточную толщину или прорвется, коэффициент трения начнет увеличиваться. Работа сопряженных деталей, которые испытывают постоянную нагрузку, в подобных условиях будет означать, что проворачивающий момент увеличился. Если проще, чем больше сила трения, тем сильнее возрастают риски проворачивания вкладышей коленвала при таких увеличенных нагрузках.

Рост нагрузок в паре вкладыш-коленвал приводит к уменьшению толщины масляной пленки или к полному разрыву (сухое трение). Параллельно увеличению силы трения происходит усиленное выделение тепла, в области трения возникают локальные перегревы. При повышении нагрева нарушается температурная стабильность масла, толщина масляной пленки еще больше снижается, вкладыш может прихватывать к поверхности шейки коленчатого вала.

Также следует добавить, что толщина масляной пленки между сопряженными деталями напрямую зависит от того, с какой скоростью указанные детали перемещаются относительно друг друга (гидродинамическое трение). Чем быстрее детали двигаются, тем интенсивнее масло попадает в зазор, который присутствует между трущимися элементами. Получается, создается более толстый масляный клин-пленка по сравнению с такой же пленкой на меньшей скорости движения сопряженных деталей. При этом необходимо учитывать тот факт, что увеличение скорости движения деталей увеличивает и силу трения, а также растет нагрев от такого трения. Это значит, что температура моторного масла начинает повышаться, смазка разжижается, толщина пленки становится меньше.

Еще на силу трения оказывает влияние то, с какой точностью изготовлены поверхности сопряженных деталей, от степени шероховатости указанных поверхностей и т.д. Если, например, поверхность вкладыша или шейки окажется неровной, тогда возникнут зоны, в которых возникнет практически сухое трение или детали будут контактировать в условиях недостаточной толщины масляной пленки. Параллельно такие зоны сухого трения могут возникать и в тех случаях, когда в моторном масле присутствуют механические частицы, то есть масло загрязнено.

По указанным причинам после сборки нового ДВС или капитального ремонта двигателя силовой агрегат должен пройти процесс обкатки, который предполагает умеренные нагрузки и частую смену моторного масла. Дело в том, что нагруженные пары должны приработаться друг к другу, так как притирка постепенно нивелирует возможные имеющиеся микродефекты, которые оказывают влияние на эффективность образования и последующую стабильность образованной масляной пленки.

Добавим, что определенное влияние оказывает и вязкость масла в двигателе. Более вязкие масла вызывают увеличенный момент трения в нагруженных парах. Параллельно с этим толщина пленки вязкого масла также больше в месте сопряжения деталей. Однако это не значит, что нагруженные детали будут защищены от повышенного или сухого трения. Дело в том, что вязкая смазка может просто не доходить до места трения в необходимом количестве, что приводит, в свою очередь, к уменьшению толщины пленки или даже ее разрыву.

По указанной причине не так просто дать ответ, какое масло лучше применительно к вкладышам и их проворачиванию с учетом только одного показателя вязкости. Не следует забывать о том, что важнейшей характеристикой является также смазывающая способность масла, то есть свойство смазки сцепляться с металлическими поверхностями. Следует учитывать и стабильность пленки того или иного масла в условиях различных нагрузок и температур.

Последствия проворота вкладышей

Начнем с того, что проворачивание шатунных вкладышей двигателя при своевременном определении поломки является менее серьезной проблемой по сравнению с проворачиванием коренных вкладышей коленвала. Если же проблему выявили поздно, тогда последствия для ДВС могут быть разными. Бывает так, что после проворачивания шатунного вкладыша двигателю может понадобиться дорогостоящий капитальный ремонт.

Распространена и такая ситуация, когда провернутый шатунный вкладыш попросту меняют на новый и двигатель работает дальше. Отметим, что делать так не рекомендуется по причине того, что ресурс отремонтированной таким образом сопряженной пары шатун-шейка коленвала может быть сильно сокращен (на 60-70%). Более приемлемым вариантом принято считать подход, когда меняется шатун, в котором провернуло вкладыш. Также шатун часто подлежит замене и по причине того, что в результате проворачивания вкладыша ломается замок шатуна. Оптимальным же способом ремонта принято считать расточку коленвала и замену вкладышей/шатунов.

Шлифовка коленвала после проворачивания вкладыша обычно является необходимой операцией, так как на шейке появляются задиры. После разборки двигателя коленчатый вал необходимо промерять, после чего осуществляется его расточка с учетом последующей установки новых вкладышей ремонтного размера. Только так удается добиться необходимого состояния поверхностей и правильного натяга вкладыша после установки.

Читайте также  Как определить неработающую форсунку на работающем двигателе?

Что в итоге

С учетом приведенной выше информации можно сделать вывод о том, что появление стука в двигателе является подом для немедленного прекращения эксплуатации ТС. Также следует учитывать, что на состояние вкладышей сильно влияет и температурный режим работы силового агрегата. Другими словами, перегрев двигателя может привести к проворачиванию шатунных или коренных вкладышей, заклиниванию мотора и т.д. В таком случае двигатель может полностью прийти в негодность, так как разбивается постель коленвала, выходит из строя сам коленчатый вал, блок цилиндров и т.д.

Что касается моторного масла, необходимо использовать только те ГСМ, которые соответствуют всем требованиям и необходимым допускам завода-изготовителя силового агрегата. Также масло и масляный фильтр необходимо своевременно менять, не допускать попадания грязи и механических частиц в смазку. Повышенного внимания заслуживает и сама система смазки, так как снижение производительности или неисправности могут привести к масляному голоданию, в результате чего существенно повышается риск проворачивания вкладышей.

Напоследок добавим, что бензиновый двигатель нуждается в прогреве после холодного запуска, затем ездить необходимо без нагрузок до момента выхода силовой установки на рабочие температуры. В случае с дизелем мотор прогревается в движении, до полного прогрева не рекомендуется резко нагружать агрегат. Также следует помнить, что как новый двигатель, так и мотор после ремонта нуждается в обкатке, так как нагруженные пары и сопряженные элементы нуждаются в притирке.

Вкладыши коленчатого вала: что должен знать о них автолюбитель?

Двигатель транспортного средства представляет собой сложный по своей конструкции агрегат, состоящий из тысяч различных деталей. Чтобы система ДВС работала сбалансировано, все элементы агрегата должны функционировать должным образом. В этой статье мы поговорим о вкладышах для ремонта коленвала: в чем заключается их предназначение, какая маркировка и как произвести замену компонентов.

Описание вкладышей коленвала

Все коренные и шатунные шейки коленвала имеют свои собственные размеры, речь идет о параметрах, которые принимают шейки после процесса шлифовки. Размеры этих элементов должны полностью соответствовать габаритам, которыми обладают ремонтные вкладыши коленвала. Соответственно, при покупке таких запчастей необходимо учитывать параметры своего транспортного средства, ведь каждый отдельный мотор имеет свои размеры.

Отработавшие свой ресурс вкладыши коленвала

К примеру, если вы являетесь владельцем классического автомобиля ВАЗ, то должны иметь в виду, что отечественные авто имеют четыре различных размера вкладышей. Это означает, что коленвал в принципе может быть расточен не более четырех раз. Также нужно учесть, что вкладыши коленвала имеют и наружный размер, который никогда не изменяется, а вот внутренний может регулироваться из-за увеличения толщины элементов.

Назначение вкладышей

По сути, коренные вкладыши коленчатого вала, вне зависимости от маркировки, выполняют роль подшипников, предназначенных для улучшения скольжения шатунов. Шатуны, как известно, предназначены для вращения коленвала под воздействием микровзрыва горючей смеси в камерах сгорания мотора. Поскольку элементы периодически изнашиваются, автомобилист должен своевременно выполнять их снятие и замену, что также должно сопровождаться расточкой вала.

Не секрет, что при работе двигателя внутренние узлы подвергаются высоким нагрузкам и скоростям вращения. Это означает, что мотору просто необходимо снизить трение, в противном случае агрегат может выйти из строя практически сразу. Чтобы показатель силы трения был значительно ниже, все необходимые компоненты внутри мотора функционируют в микронной пленке, которая является масляной.

Износившийся и новый вкладыш

Эта прослойка, которая обволакивает металлические компоненты агрегата, образовывается исключительно при достаточном давлении рабочей жидкости. В частности пленка всегда должна находиться между коренной шейкой коленвала и вкладышем, в результате чего показатель трения не такой высокий, как мог бы быть. Соответственно вкладыши, изготовление которых осуществляется из металла, представляют собой надежную защиту, которая позволяет повысить ресурс эксплуатации вала в целом.

Конструкция

Казалось бы, вкладыш коленвала — обычная деталь, но ее изготовление осуществляется с применением нескольких различных металлов.

Соответственно вкладыш состоит из нескольких слоев, которые мы рассмотрим ниже:

  • изготовление первого слоя осуществляется из меди, ее процент может составлять от 69 до 75%;
  • изготовление второго слоя осуществляется из свинца, его процент составляет от 21 до 25%;
  • третий слой — олово, около 2-4%.

В целом общая толщина вкладыша составляет 250-400 микро. Следует отметить, что иногда для изготовления вкладыша применяется не медь, олово и свинец, а специализированный алюминиевый сплав. Маркировка в этом случае будет зависеть исключительно от производителя.

Что касается видов, то маркировка здесь будет зависеть от типа компонента.

В целом вкладыши для коленчатого вала подразделяются не несколько групп:

  1. Коренные. Вне зависимости от маркировки, коренные вкладыши выполняют сходные функции. Они монтируются между коленчатым валом и тем местом, где этот вал проходит через корпус мотора.
  2. Шатунные. Шатунные компоненты расположены непосредственно между шатунами и шейками вала.

В принципе вкладыши, как шатунные, так и коренные, производятся для каждого типа мотора, но все они различаются между собой по внутреннему диаметру. В зависимости от модели двигателя диаметры элементов будут различны, даже для одного двигателя. Как правило, разница в диаметре, то есть шаг, составляет 0.25 мм. Это значит, что размерный ряд деталей, составляется следующим образом: 0.25 мм, 0.5 мм, 0.75 мм и т.д.

Проверка и замена вкладышей

Когда нужно менять?

Поскольку коленвал функционирует в условиях высоких температурных и физических нагрузок, только подшипники могут удержать его на своей оси. Шейки, как коренные, так и шатунные, исполняют роль внутренних обойм, а вот вкладыши — наружных. Как и другие элементы мотора, вкладыши со временем изнашиваются, что приводит к необходимости их замены.

Физический износ является важным условием, при котором возникает необходимость снятия и замены элементов. Как бы автолюбитель не желал избежать износа, это невозможно. Эксплуатация транспортного средства с изношенными деталями может привести к выходу из строя двигателя.

Однако необходимость снятия и установки новых запчастей может возникнуть и в других случаях. К примеру, часто отечественные автолюбители сталкиваются с такой проблемой, как проворачивание вкладышей. Тонкая пластина элемента монтируется в специальную канавку, а снаружи выступы упираются в торцевые части подшипников. В некоторых случаях, когда нагрузки очень высокие, выступы не в состоянии удержать вкладыш, в результате чего последний проворачивается.

В этом случае дальнейшая работа двигателя внутреннего сгорания будет невозможной, эта неисправность возникает по следующим причинам:

  • в результате использования очень вязкого масла;
  • при отсутствии смазывающей жидкости или попадании в нее абразива;
  • при очень малом натяге при монтаже крышек подшипников;
  • если масло недостаточно вязкое;
  • если двигатель регулярно эксплуатируется в условиях высоких нагрузок и перегрузок.

Признаки износа

Если вы уже поняли, что ремонт мотора вашего автомобиля неизбежен, то вам наверняка будет интересно выявить износ элементов. Чтобы определить замеры, вам потребуется микрометр, однако выявить поломку можно и визуально. В ходе осмотра вам также потребуется оценить возможность последующей расточки вала.

А вот если вкладыши начали проворачиваться, то их снятие и установка новых должна производиться как можно быстрее. Одним из признаков износа является громкий стук вала, снижение мощности двигателя, а также его регулярные попытки заглохнуть.

В том случае, если заклинили шейки, то движение на автомобиле будет невозможным. Так или иначе, но вам придется осуществить подробный осмотр элементов. Если на шейках будут выявлены волнообразные повреждения, которые в принципе можно прочувствовать и руками, то коленвалу необходимо расточка. Соответственно замена вкладышей коленвала в этом случае также будет необходимой. Если вы собрались покупать новые детали, то лучше это сделать после того, как мотор будет расточен, ведь если износ достаточно большой, то вы можете прогадать с размером.

Последовательность действий по замене

На сегодняшний день процедура снятия и установки вкладышей коленвала не особо популярна среди наших автомобилистов. Водители в большинстве случаев доверяют эту процедуру специалистам, но некоторые все же решаются на то, чтобы произвести замену элементов в домашних условиях. Мы рекомендуем осуществлять ремонт своими руками только в том случае, если вы имеете хоть какие-то знания.

В целом процесс замены вкладышей описан ниже:

  1. Перед тем, как приступить к замене компонентов, необходимо проверить наличие зазора между валом и вкладышем. Чтобы сделать это, вам потребуется использовать калиброванную пластиковую проволоку, которая находится на шейке. Затем крышка с элементов устанавливается и затягивается с необходимым усилием, в данном случае этот показатель составляет 51 Нм. Все замеры следует производить с помощью динамометрического ключа.
    Когда крышка демонтирована, показатель зазора будет соответствовать степени сплющивания проволоки. Для оценки нужного параметра следует использовать номинальный зазор, данный показатель должен быть указан в сервисном мануале к вашему авто. В том случае, если при проверке зазора вы выявили, что он больше того, который указан вашим автопроизводителем, то вкладыши придется менять. Покупка вкладышей осуществляется строго в соответствии с вашей моделью авто, если зазор слишком большой, то покупайте детали только после расточки вала.
  2. Когда все зазоры были замерены, необходимо будет демонтировать шатуны со всех шеек. Затем снимается коленчатый вал и осуществляется его расточка. Непосредственно сам процесс шлифовки должен происходить на центростремителе. Естественно, такое устройство вряд ли найдется в гараже у рядового автомобилиста, поэтому процедуру шлифовки все же лучше будет доверить профессионалам.
    Когда коленвал расточен, приступаете к выбору ремонтных вкладышей. В этом случае вам опять придется воспользоваться микрометром, затем осуществите примерку вкладышей вала. Снимая старые вкладыши, обратите внимание на их состояние — возможно, их выход из строя обусловлен внешними механическими воздействиями. Чтобы неисправность не повторилась через некоторое время, причину желательно устранить, разумеется, если она в принципе есть. Ведь как вы помните, выход из строя вкладышей может быть следствием физического износа.
  3. Только после того, как вы окончательно выбрали запчасти для ремонта, можно приступить к процессу установки коленчатого вала. Все действия по монтажу осуществляются в обратной последовательности, все должно быть сделано правильно и строго в соответствии с требованиями автопроизводителя. Только когда все компоненты будут установлены на свое место, можно закрутить крышки коренных подшипников.
  4. После этого приступаете к процедуре монтажа непосредственно самих вкладышей вала, а также шатунов. В целом этот процесс не должен занять много времени и сил. Ремонтные вкладыши необходимо смазать моторной жидкостью, после чего закручиваются их крышки. Собственно, сам монтаж довольно прост, если не считая подготовительные процессы.

Всегда при эксплуатации своего «железного коня» помните о том, что коленчатый вал является одним из самых дорогих в плане ремонта и замены узлов. Тем более, что он испытывает очень серьезные нагрузки при функционировании. Соответственно вам, как водителю, необходимо принимать все меры для того, чтобы увеличить его ресурс службы. И немаловажной процедурой для этого является расточка, которая должна осуществляться вовремя. Если процесс расточки выполнен правильно, то все шейки будут гладкими, соответственно, они смогут выдерживать сильные нагрузки при эксплуатации.

Читайте также  Как правильно проверить уровень масла в двигателе?

Также учитывайте и то, что мотор транспортного средства является достаточно сложным по своей конструкции агрегатом. И хотя некоторые специалисты могут разобрать и собрать его своими руками даже с закрытыми глазами, демонтаж и монтаж коленчатого вала все же требует специфических навыков. Поэтому при отсутствии хорошего опыта мы не рекомендуем вам браться за это дело. Ведь перетянув или недотянув вкладыши при установке, можно вновь столкнуться с проблемой их проворачивания.

Видео «Меняем вкладыши коленвала в домашних условиях»

На примере автомобиля Форд Транзит предлагаем вам ознакомиться с процессом замены вкладышей коленвала.

Вкладыши для двигателя – детали критические

На первый взгляд вкладыши – это просто штамповка. Но впечатление обманчиво: подшипники скольжения представляют собой высокотехнологические изделия из сложного композитного материала, имеющие специфическую геометрию и точные размеры. И, что немаловажно – они являются критическими деталями двигателя, отказ которых ведет к его остановке и очень дорогому ремонту.

Функции подшипников

Вращающиеся компоненты двигателей внутреннего сгорания оборудованы подшипниками скольжения, которые выполняют разные функции:

• коренные вкладыши поддерживают коленчатый вал и обеспечивают его вращение. Устанавливаются в блоке цилиндров. Каждый вкладыш состоит из верхней и нижней половин. На внутренней поверхности верхней половины, как правило, есть канавка для смазки и отверстие для подачи масла.

• шатунные вкладыши обеспечивают вращение шейки шатуна, который, в свою очередь, вращает коленвал. Устанавливаются в нижней головке шатуна.

• упорные кольца предотвращают осевое движение вала. Часто упорные кольца являются частью одного из коренных вкладышей – такие комбинированные подшипники называются буртовыми или фланцевыми вкладышами.

• втулки верхней головки шатуна обеспечивают вращение поршневого пальца, соединяющего поршень с шатуном.

• вкладыши распредвала поддерживают распредвал и обеспечивают его вращение. Устанавливаются в верхней части головки блока цилиндров (или в блоке цилиндров – у двигателей с нижним расположением распредвала).

Биметаллические (а) и триметаллические подшипники со свинцовистым покрытием (б, в)

Подшипники скольжения смазываются моторным маслом, постоянно подающимся к их поверхности и обеспечивающим гидродинамический режим трения.

Непосредственный контакт между трущимися в гидродинамическом режиме поверхностями отсутствует – благодаря масляной пленке, которая образуется в сходящемся зазоре (масляном клине) между поверхностями подшипника и вала.

Условия работы подшипников скольжения

Масляная пленка предотвращает локальную концентрацию нагрузки. Однако при определенных условиях гидродинамический режим трения сменяется на смешанный. Это происходит, если имеются:

• недостаточный поток масла;

• низкая вязкость масла;

• перегрев масла, дополнительно снижающий его вязкость;

• высокая шероховатость поверхностей подшипника и вала;

• деформация и геометрические дефекты подшипника, его гнезда или вала.

В смешанном режиме трения возникает непосредственный физический контакт поверхностей, чередующийся с гидродинамическим трением. А это может привести к задирам, повышенному износу подшипника и даже к схватыванию с валом.

ДВС характеризуются циклическими нагрузками подшипников, об­условленными переменным давлением в цилиндрах и инерционными силами, вызванными движущимися частями. И эти циклические нагрузки на подшипник могут привести к его разрушению. Отсюда – высочайшие требования к материалам, из которого он производится.

Структура подшипников скольжения

Материалы подшипников скольжения

Материалы, из которых делают подшипники, должны обладать многими, иногда противоречивыми, свойствами.

• Усталостная прочность (максимальная нагрузка) – максимальная циклическая нагрузка, которую подшипник выдерживает в течение неограниченного числа циклов. Превышение этой нагрузки приводит к образованию усталостных трещин в материале.

• Сопротивление схватыванию (совместимость) – способность материала подшипника сопротивляться свариванию с материалом вала во время прямого физического контакта между ними.

• Износостойкость – способность материала подшипника сохранять свои размеры несмотря на присутствие абразивных частиц в масле, а также в условиях механического контакта с валом.

• Прирабатываемость – способность материала подшипника компенсировать небольшие геометрические дефекты вала и гнезда за счет незначительного локального износа или пластической деформации.

• Абсорбционная способность – способность материала подшипника захватывать мелкие чужеродные частицы, циркулирующие с маслом.

• Коррозионная стойкость – способность материала подшипника сопротивляться химическим воздействиям окисленных или загрязненных масел.

• Кавитационная стойкость – способность материала подшипника выдерживать ударные нагрузки, производимые схлопывающимися кавитационными пузырьками (пузырьки образуются в результате резкого падения давления в текущем масле).

Эксцентриситет подшипника скольжения

Соответственно длительная и надежная работа подшипника скольжения достигается соединением высокой прочности (усталостной прочности, износостойкости, кавитационной стойкости) с мягкостью (прирабатываемостью, сопротивлением схватыванию, абсорбционной способностью).

То есть материал должен быть одновременно и прочным, и мягким. Это звучит парадоксально, однако существующие подшипниковые материалы соединяют эти противоположные свойства – правда, с определенным компромиссом.

Для достижения этого компромисса используются композитные структуры, которые могут быть или слоистыми (мягкое покрытие, нанесенное на прочное основание) или дисперсными (мягкие частички, распределенные внутри прочной матрицы).

Биметаллические подшипники имеют стальное основание, обеспечивающее жесткость и натяг в тяжелых условиях повышенной температуры и циклических нагрузок.

Второй слой материала состоит из антифрикционного сплава. Его толщина относительно велика: она составляет около 0,3 мм. Толщина антифрикционного слоя – важная характеристика биметаллических подшипников, способных прирабатываться и приспосабливаться к относительно большим геометрическим дефектам. Биметаллический подшипник также обладает хорошей абсорбционной способностью, поглощая как мелкие, так и крупные включения в масле.

Обычно рабочий слой делают из алюминия, содержащего 6–20% олова в качестве твердого смазочного материала: именно олово обеспечивает антифрикционные свойства. Кроме этого, сплав часто содержит 2–4% кремния в виде мелких включений, распределенных в алюминии. Твердый кремний упрочняет сплав и обладает способностью полировать поверхность вала – поэтому его присутствие особенно важно при работе с валами из ковкого чугуна. Сплав может быть дополнительно упрочнен небольшими добавками меди, никеля, марганца, ванадия и других элементов.

Триметаллические подшипники, помимо стального основания, имеют промежуточный слой из медного сплава, содержащего 20–25% свинца в качестве твердой смазки и 2–5% олова для упрочнения меди.

Третий слой представляет собой покрытие на основе свинца, которое также содержит около 10% олова, повышающего коррозионную стойкость сплава и несколько процентов меди для упрочнения. Толщина покрытия составляет всего 12–20 мкм. Низкая толщина покрытия повышает его усталостную прочность, однако снижает антифрикционные свойства (прирабатываемость, абсорбционную способность, сопротивление схватыванию), особенно если мягкое покрытие было подверг­нуто износу. Между промежуточным слоем и свинцовистым покрытием наносится очень тонкий (1–2 мкм) слой никеля, служащий барьером, предотвращающим диффузию олова из покрытия в промежуточный слой.

Измерение высоты выступа стыка подшипника

Инновационные материалы для подшипников скольжения постоянно разрабатываются производителями подшипников. Это новые материалы, способные работать в тяжело нагруженных двигателях (дизельные двигатели с непосредственным впрыском топлива, двигатели с турбонаддувом), а также в гибридных и старт-стоп двигателях, в том числе:

• высокопрочные алюминиевые биметаллические материалы;

• прочные металлические покрытия для триметаллических подшипников;

• полимерные композитные покрытия, содержащие частицы твердых смазочных мате­риалов;

• бессвинцовые экологически чистые безвредные материалы.

Свойства подшипниковых материалов

Свойства материалов подшипников, характеризующие прочность и мягкость, сочетаются в различных пропорциях у разных материалов.

Отличные мягкие антифрикционные свойства триметалла ограничены толщиной покрытия (12 мкм). Если геометрический дефект или чужеродные частицы превышают толщину покрытия, ее антифрикционные свойства резко падают.

Мягкие свойства биметалла несколько ниже, чем у триметалла, однако они не ограничены толщиной покрытия, поэтому биметаллические подшипники способны прирабатываться к относительно крупным несоосностям и другим геометрическим дефектам. С другой стороны, усталостная прочность (максимальная нагрузка) биметаллических подшипников ниже (40–50 МПа), чем у триметаллических материалов (60–70 МПа). Также биметаллические подшипники без кремния хуже работают с чугунным валом.

Геометрические характеристики подшипников скольжения

Масляный зазор – это основной геометрический параметр подшипников скольжения. Он равняется разнице между внутренним диаметром подшипника и диаметром вала (внут­ренний диаметр подшипника измеряется под углом 90° к линии, разделяющей верхний и нижний вкладыши).

Величина масляного зазора – очень важный показатель. Большой зазор приводит к увеличению потока масла, что снижает его нагрев в подшипнике, однако вызывает неоднородное распределение нагрузки (она концентрируется на меньшей площади поверхности и увеличивает вероятность разрушения вследствие усталости). Также большой зазор производит значительную вибрацию и шум. А слишком маленький зазор вызывает перегрев масла и резкое падение его вязкости.

Типичные величины масляного зазора С: для пассажирских автомобилей Cмин = 0,0005D, Cмакс = 0,001D, для гоночных автомобилей Cмин = 0,00075D, Cмакс = 0,0015D (где D – диаметр вала).

Эксцентриситет является мерой, определяющей некруглость подшипника. Действительно, внутренняя поверхность подшипника не является абсолютно круглой. Она имеет форму, напоминающую лежащий на боку лимон. Это достигается за счет переменной толщины стенки подшипника, имеющей максимальное значение (Т) в центральной части и постепенно уменьшающейся в направлении стыка.

Принято измерять минимальное значение толщины (Te) на определенной высоте h для того, чтобы исключить зону выборки в области стыка. Разница между максимальным и минимальным значениями толщины называется эксцентриситетом: Т – Те.

Эксцентриситет, образованный переменной толщиной стенки вкладыша, добавляется к эксцентриситету, вызванному смещением вала относительно центра подшипника. Наличие эксцентриситета позволяет стабилизировать гидродинамический режим смазки за счет создания масляного клина с большим углом схождения. Рекомендуемые величины эксцентриситета: для пассажирских автомобилей 5–20 мкм, для гоночных автомобилей 15–30 мкм.

Посадочный натяг необходим для обеспечения надежной посадки подшипника в гнезде. Прочно посаженный подшипник имеет равномерный контакт с поверхностью гнезда – это предотвращает смещение подшипника во время работы, обеспечивает максимальный отвод тепла из области трения и увеличивает жесткость гнезда. Поэтому наружный диаметр подшипника и его периметр всегда больше диаметра гнезда и его периметра.

Поскольку прямое измерение наружного периметра подшипника – трудная задача, обычно измеряется другой параметр: высота выступа стыка (выступание). Высота выступа стыка равна разнице между наружным периметром половины подшипника и периметром половины гнезда.

Проверяемый вкладыш устанавливают в измерительный блок и прижимают с определенным усилием F, величина которого пропорциональна площади сечения стенки подшипника. Оптимальная величина высоты выступа стыка зависит от диаметра подшипника, жесткости и теплового расширения гнезда и температуры. Типичные значения высоты выступа стыка для подшипников диаметром 40–65 мм: для пассажирских автомобилей 25–50 мкм, для гоночных автомобилей 50–100 мкм.

Несмотря на самые совершенные конструкцию, материалы и технологии, в эксплуатации ДВС встречаются случаи износов и повреждений подшипников. Чтобы найти и устранить их причины, знание конструкции подшипников необходимо, но недостаточно. Об этом – в следующей статье.