Что такое номинальные обороты двигателя?

Indivel › Блог › Мощность двигателя и крутящий момент

Двигатель внутреннего сгорания (ДВС) это устройство, в котором химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу.

Возгорание топлива в цилиндре (6) приводит к перемещению поршня (7), что, в свою очередь, приводит к проворачиванию коленчатого вала.

Циклы расширения и сжатия в цилиндрах приводят в действие кривошипно-шатунный механизм, который, в свою очередь, преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Из чего состоит двигатель и как он работает:

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Еще примеры

Для большего практического понимания важности крутящего момента приведем несколько примеров на гипотетическом двигателе.

Даже без учета максимальной мощности, по графику, отражающему крутящий момент, можно сделать некоторые выводы. Разделим количество оборотов коленчатого вала на три части — это будут низкие обороты, средние и высокие.

На графике слева представлен вариант двигателя, который имеет высокий крутящий момент на низких оборотах (что равносильно высокому крутящему моменту на малых скоростях) — с таким двигателем хорошо ездить по бездорожью — он «вытянет» из любой трясины. На графике справа — двигатель, у которого высокий крутящий момент на средних оборотах (средних скоростях) — этот двигатель рассчитан для использования в городе — он позволяет достаточно резво ускоряться от светофора до светофора.

Следующий график характеризует двигатель, который обеспечивает хорошее ускорение даже на высоких скоростях — с таким двигателем комфортно на трассе. Замыкает графики универсальный двигатель — с широкой полкой — такой двигатель и из болота вытянет, и в городе позволяет хорошо ускоряться, и на трассе.

Крутящий момент отвечает за способность ускоряться и преодолевать препятствия,
мощность ответственна за максимальную скорость автомобиля,

а обороты двигателя все усложняют, так как каждому значению оборотов соответствует свое значение мощности и крутящего момента.

А вцелом все выглядит так:

высокий крутящий момент на низких оборотах дает автомобилю тягу для передвижения по бездорожью (таким распределением сил могут похвастать дизельные двигатели). При этом мощность может стать уже вторичным параметром — вспомним, хотя бы, трактор Т25 с его 25 л.с.;

высокий крутящий момент (а лучше — «полка крутящего момента) на средних и высоких оборотах дает возможность резко ускоряться в городском потоке или на трассе;

высокая мощность двигателя обеспечивает высокую максимальную скорость;

низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.

Номинальные обороты двигателя

Введение

Тяговый расчет проектируемого трактора проводится с целью определения мощности двигателя, необходимой для получения расчетной силы тяги при различных рекомендуемых скоростях движения. С помощью тягового расчета делают выбор числа передач и наиболее рациональной разбивки передаточного отношения, обеспечивающих получение минимальной для данного типа и класса тракторов скорости, а также промежуточных и максимальных скоростей.

Основными этапами тягового расчета являются: определение силы тяги трактора по балансу мощностей и составление тяговой характеристики трактора, с помощью которой определяют возможности наиболее рационального его использования. Кроме того, рассматриваются вопросы, связанные с выбором основных параметров проектируемого трактора и структуры ряда передаточных чисел его трансмиссии.

Тяговый расчет трактора производится на основании данных задания.

Графическая часть работы включает в себя:

а) скоростную характеристику двигателя и лучевую диаграмму загрузки двигателя на передачах;

б) кинематическую схему трансмиссии трактора;

в) совмещенные потенциальную и тяговую характеристики трактора.

Анализ исходных данных

Назначение трактора

Слово «трактор» произошло от латинского слова «трако» – «тащу», «тяну». В этом и заключается главное назначение трактора: он или тащит на себе различные машины – орудия, или тянет их за собой. Но одно дело – тянуть легкую повозку по хорошо укатанной дороге и совсем другое – тянуть плуг по целине. Кроме того, трактор должен еще передавать энергию прицепленным к нему или навешенным на него машинам-орудиям (плугам, сеялкам, культиваторам) и уборочным машинам.

Трактор выполняет многочисленные виды работ в сельском и лесном хозяйстве, в промышленности и строительстве. Трактор-экскаватор, трактор-бульдозер, трактор-канавокопатель, трактор-погрузчик, трактор-тягач, трактор- трубоукладчик, лесосплавный трактор-амфибия это далеко не полный перечень существующих тракторов.

Больше всего тракторов в сельском хозяйстве, здесь они являются основой механизации производства.

Существуют сельскохозяйственные тракторы нескольких видов: тракторы общего назначения, используемые в соединении агрегата с прицепными и навесными машинами для пахоты, посева, культивации, уборки; универсально-пропашные, с помощью которых проводят междурядную обработку (рыхление, окучивание, опыливание, опрыскивание) и уборку картофеля, сахарной свеклы, подсолнечника и других пропашных культур; специальные, приспособленные для работы на крутых склонах, болотистых почвах, в садах, виноградниках, на плантациях хлопчатника.

Все эти тракторы не похожи один на другой по внешнему виду, развивают разную мощность, передвигаются с разной скоростью, соединяются с разными машинами. Но каждый из них обязательно состоит из одних и тех же основных частей: двигателя, силовой передачи (трансмиссии), ходовой части, рабочего оборудования и органов управления.

Трактора различного назначения представлены на рисунке 2.1.1

Вес трактора [Q]

Вес машины. В исходных данных указана масса трактора (кг), для расчета нам потребуется вес (Н).

,

где m – масса трактора,

g – ускорение свободного падения.

Рисунок 2.1 – Образцы тракторов различного назначения

Для гусеничного трактора сцепным весом является рабочий вес всего трактора, а для колесного – рабочий вес, приходящийся на ведущие колеса.

Коэффициент самоперекатывания [f]

Гусеничный трактор при сопротивлении перекатыванию должен учитывать возникающие потери в процессе трения элементов движителя и деформации грунта в связи с действием различных нагрузок от поверхности гусениц.

Внутренние потери обусловлены трением направляющих колес и различных катков в подшипниках, трением имеющихся звеньев гусениц, находящихся в шарнирах, а также биением самих гусениц. Учет данных потерь ведется коэффициентом, а компенсация происходит посредством подведения к гусеницам ведущего крутящего момента. Деформация грунта, возникающая во время угловых поворотов, и вертикальное прессование почвы вызывают внешние потери. Таким образом, нагрузка опорных катков передается на гусеницы и образуется колея.

Внешние потери учитываются также коэффициентом. Их компенсирует касательная сила тяги. Среди всех потерь именно внутренним потерям, возникающим в гусеничном движителе, отводится 60%. Именно поэтому необходимо создать требуемое натяжение гусениц с соблюдением всех правил техобслуживания. Потерям от вертикальной деформации почвы отводится лишь 20%, а от буксования гусениц итого меньше – 3%.

Читайте также  Что дает чип тюнинг двигателя?

Коэффициент равен примерно 0,08…0,12 и 0,06…0,08 для гусеничного и колесного тракторов соответственно. Коэффициент самоперекатывания может меняться в значительных пределах 0,05…0,3 при нагрузках типа бульдозерных и на слабых грунтах.

Коэффициент сцепления [φкр max]

Величина, соответствующая коэффициенту трения скольжения колеса (трака гусеницы) по поверхности, т.е. при коэффициенте скольжения, равном единице. Обычно это понятие распространяют на все значения при коэффициентах скольжения от единицы до значения, соответствующего максимальному коэффициенту сцепления. Коэффициенты сцепления указаны в таблице 2.1.

Таблица 2.1 – Коэффициенты сцепления

Материал Резиновые шины Траковая лента
Сила сцепления
Бетон 0,90 0,45
Глинистый суглинок, сухой 0,55 0,90
Глинистый суглинок, влажный 0,45 0,70
Изрезанный колеями тяжелый суглинок 0,40 0,70
Сухой песок 0,20 0,30
Влажный песок 0,40 0,50
Карьерный грунт 0,65 0,55
Плотный снег 0,20 0,27
Лед 0,12 0,12
Плотный грунт 0,55 0,90
Рыхлый грунт 0,45 0,60
Уголь в отвале 0,45 0,60

Тип трансмиссии

Трансмиссия трактора, как правило, многопоточная, то есть передает мощность двигателя не только на ходовую часть, но и для привода агрегатируемых машин и вспомогательных механизмов.

Современные тракторы оборудуются трансмиссиями нескольких различных типов:

  • Механические ступенчатые;
  • Механические бесступенчатые;
  • Гидромеханические;
  • Гидрообъемные;
  • Электрические и электромеханические.

При выполнении курсовой работы будут рассматриваться 2 вида трансмиссий – МСТ и ГМТ.

1) механические ступенчатые трансмиссии (МСТ). Механические ступенчатые трансмиссии имеют наименьшую стоимость и наиболее компактны при одинаковой величине передаваемой мощности, но не позволяют плавно регулировать скорость и тяговое усилие трактора. Механическая трансмиссия трактора состоит из главной фрикционной муфты сцепления, коробки передач, центральной (главной) передачи, конечных передач, передачи механизма отбора мощности. Дополнительно в механическую трансмиссию могут входить: увеличитель крутящего момента, ходоуменьшитель, редуктор-умножитель числа передач, раздаточная коробка. На гусеничных тракторах, кроме того, в состав трансмиссии входит механизм поворота.

2) гидромеханические трансмиссии (ГМТ) состоят из гидротрансформатора и механической ступенчатой коробки передач. Применение гидротрансформатора позволяет более полно использовать мощность двигателя в условиях переменной нагрузки на трактор и упрощает процесс управления им. Ступенчатая коробка передач позволяет выбирать нужный диапазон скоростей. В отличие от автомобилей, где гидромеханические трансмиссии обычно автоматические, на тракторах такая автоматизация не нужна и переключение передач осуществляется оператором. Изначально, гидромеханической трансмиссией оснащались тяжелые промышленные тракторы (например, Т-330 или Caterpilar), но в настоящее время, ею оснащаются практически все новые типы тракторов. Ступенчатые коробки передач могут быть как планетарными, так и обычного типа. К недостаткам таких трансмиссий относится низкий КПД и высокая сложность.

КПД трансмиссии

КПД трансмиссии представляет собой отношение мощности на ведущих звездочках трактора к мощности двигателя, передаваемой в трансмиссию.

Количество передач

Количество ступеней в КП.

Радиус ведущего колеса [Rвк]

Ведущие колеса служат для преобразования крутящего момента, подводимого к ним от двигателя, в касательную силу тяги, необходимую для передвижения трактора и буксирования прицепов. В целях обеспечения надежного сцепления ведущих колес с почвой на них передается большая часть (примерно 70…75 %) веса трактора. Размерность – метры.

Номинальные обороты двигателя

Обороты, при которых двигатель набирает максимальную мощность.

Частота вращения: формула

Количество повторений каких-либо событий или их возникновения за одну единицу таймера называется частотой. Это физическая величина измеряется в герцах – Гц (Hz). Она обозначается буквами ν, f, F, и есть отношение количества повторяющихся событий к промежутку времени, в течение которого они произошли.

При обращении предмета вокруг своего центра можно говорить о такой физической величине, как частота вращения, формула:

где:

  • N – количество оборотов вокруг оси или по окружности,
  • t – время, за которое они были совершены.

В системе СИ обозначается как – с-1 (s-1) и именуется как обороты в секунду (об/с). Применяют и другие единицы вращения. При описании вращения планет вокруг Солнца говорят об оборотах в часах. Юпитер делает одно вращение в 9,92 часа, тогда как Земля и Луна оборачиваются за 24 часа.

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

Угловая скорость

Когда тело движется по окружности, то не все его точки движутся с одинаковой скоростью относительно оси вращения. Если взять лопасти обычного бытового вентилятора, которые вращаются вокруг вала, то точка расположенная ближе к валу имеет скорость вращения больше, чем отмеченная точка на краю лопасти. Это значит, у них разная линейная скорость вращения. В то же время угловая скорость у всех точек одинаковая.

Угловая скорость представляет собой изменение угла в единицу времени, а не расстояния. Обозначается буквой греческого алфавита – ω и имеет единицу измерения радиан в секунду (рад/с). Иными словами, угловая скорость – это вектор, привязанный к оси обращения предмета.

Формула для вычисления отношения между углом поворота и временным интервалом выглядит так:

где:

  • ω – угловая скорость (рад./с);
  • ∆ϕ – изменение угла отклонения при повороте (рад.);
  • ∆t – время, затраченное на отклонение (с).

Обозначение угловой скорости употребляется при изучении законов вращения. Оно употребляется при описании движения всех вращающихся тел.

Угловая скорость в конкретных случаях

На практике редко работают с величинами угловой скорости. Она нужна при конструкторских разработках вращающихся механизмов: редукторов, коробок передач и прочего.

Вычислить её, применяя формулу, можно. Для этого используют связь угловой скорости и частоты вращения.

где:

  • π – число, равное 3,14;
  • ν – частота вращения, (об./мин.).

В качестве примера могут быть рассмотрены угловая скорость и частота вращения колёсного диска при движении мотоблока. Часто необходимо уменьшить или увеличить скорость механизма. Для этого применяют устройство в виде редуктора, при помощи которого понижают скорость вращения колёс. При максимальной скорости движения 10 км/ч колесо делает около 60 об./мин. После перевода минут в секунды это значение равно 1 об./с. После подстановки данных в формулу получится результат:

ω = 2*π*ν = 2*3,14*1 = 6,28 рад./с.

К сведению. Снижение угловой скорости часто требуется для того, чтобы увеличить крутящий момент или тяговое усилие механизмов.

Как определить угловую скорость

Принцип определения угловой скорости зависит от того, как происходит движение по окружности. Если равномерно, то употребляется формула:

Если нет, то придётся высчитывать значения мгновенной или средней угловой скорости.

Величина, о которой идёт разговор, векторная, и при определении её направления используют правило Максвелла. В просторечии – правило буравчика. Вектор скорости имеет одинаковое направление с поступательным перемещением винта, имеющего правую резьбу.

Рассмотрим на примере, как определить угловую скорость, зная, что угол поворота диска радиусом 0,5 м меняется по закону ϕ = 6*t:

ω = ϕ / t = 6 * t / t = 6 с-1

Вектор ω меняется из-за поворота в пространстве оси вращения и при изменении значения модуля угловой скорости.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Читайте также  Каков порядок работы четырехтактного четырехцилиндрового двигателя?

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки.

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Циклическая частота вращения (обращения)

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Числовое значение вектора ускорения точки В, движущейся равномерно, выражается через R и угловую скорость, таким образом:

а = ν2/ R, подставляя сюда ν = ω* R, получим: а = ν2/ R = ω2* R.

Это значит, чем больше радиус окружности, по которой движется точка В, тем больше значение её ускорения по модулю. Чем дальше расположена точка твердого тела от оси вращения, тем большее ускорение она имеет.

Поэтому можно вычислять ускорения, модули скоростей необходимых точек тел и их положений в любой момент времени.

Понимание и умение пользоваться расчётами и не путаться в определениях помогут на практике вычислениям линейной и угловой скоростей, а также свободно переходить при расчётах от одной величины к другой.

Видео

Регулирование угловой скорости асинхронного электродвигателя изменением числа пар полюсов на статоре

Номинальная скорость вращения

Прежде, чем дать определение этому понятию, необходимо определиться, что такое номинальный режим работы какого-либо устройства. Это такой порядок работы устройства, при котором достигаются наибольшая эффективность и надёжность процесса на продолжении длительного времени. Исходя из этого, номинальная скорость вращения – количество оборотов в минуту при работе в номинальном режиме. Время, необходимое для одного оборота, составляет 1/v секунд. Оно называется периодом вращения T. Значит, связь между периодом обращения и частотой имеет вид:

К сведению. Частота вращения вала асинхронного двигателя – 3000 об./мин., это номинальная скорость вращения выходного хвостовика вала при номинальном режиме работы электродвигателя.

Как найти или узнать частоты вращений различных механизмов? Для этого применяется прибор, который называется тахометр.

Двигатели постоянного тока

Резонансная частота: формула

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.


Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Циклическая частота вращения (обращения)

Скалярная величина, измеряющая частоту вращательного движения, называется циклической частотой вращения. Это угловая частота, равная не самому вектору угловой скорости, а его модулю. Ещё её именуют радиальной или круговой частотой.

Циклическая частота вращения – это количество оборотов тела за 2*π секунды.

У электрических двигателей переменного тока это частота асинхронная. У них частота вращения ротора отстаёт от частоты вращения магнитного поля статора. Величина, определяющая это отставание, носит название скольжения – S. В процессе скольжения вал вращается, потому что в роторе возникает электроток. Скольжение допустимо до определённой величины, превышение которой приводит к перегреву асинхронной машины, и её обмотки могут сгореть.

Устройство этого типа двигателей отличается от устройства машин постоянного тока, где токопроводящая рамка вращается в поле постоянных магнитов. Большое количество рамок вместил в себя якорь, множество электромагнитов составили основу статора. В трёхфазных машинах переменного тока всё наоборот.

При работе асинхронного двигателя статор имеет вращающееся магнитное поле. Оно всегда зависит от параметров:

  • частоты питающей сети;
  • количества пар полюсов.
Читайте также  Как узнать что антифриз попадает в двигатель?

Скорость вращения ротора состоит в прямом соотношении со скоростью магнитного поля статора. Поле создаётся тремя обмотками, которые расположены под углом 120 градусов относительно друг друга.

Переключение — число — пары — полюс

Механические характеристики двухскоростного асинхронного двигателя.

Переключение числа пар полюсов достигается изменением схемы соединения статорной обмотки. Роторы многоскоростных двигателей выполняются короткозамкнутыми. На рис. 3 — 18 приведены механические характеристики двухскоростного двигателя. Переход с высшей скорости вращения на низшую при переключении числа пар полюсов, как показано на графике, сопровождается торможением с отдачей энергии в сеть. Механические характеристики сохраняют свою жесткость при переходе с одной скорости вращения на другую.

Схема реверсирования трехфазного, асинхронного электродви гателя.| Механические характеристики трехфазного асинхронного электродвигателя при регулировании угловой скорости ротора изменением частоты переменного тока.

Переключение числа пар полюсов асинхронных электродвигателей обеспечивает ступенчатое регулирование частоты вращения, жесткие механические характеристики и отличается экономичностью.

Переключение числа пар полюсов асинхронного электродвигателя дает ступенчатое регулирование скорости вращения, жесткие механические характеристики и отличается экономичностью.

Путем переключения числа пар полюсов можно изменять частоту вращения только большими ступенями, например: 3000, 1500, 1000, 500 об / мин. Возможность изменения числа пар полюсов в одном двигателе достигается усложнением его устройства, увеличением размеров и значительным повышением стоимости. Поэтому многоскоростные двигатели строят не более чем на четыре скорости.

Переключение числа полюсов при различном соединении секций.| Включение Включение обмоток по схеме обмоток по схеме звезды двойной звезды.| Переключение обмоток с треугольника на двойную звезду.

Возможность переключения числа пар полюсов путем изменения схемы обмотки иллюстрирует рис. 3.65. При соединении секций обмотки, как показано на рис. 3.65, а, получают четыре полюса, а по схеме рис. 3.65, б — два. Такие переключения производят в трех фазах, а переключаемые части обмоток могут соединяться параллельно или последовательно.

Регулирование переключением числа пар полюсов является сравнительно простым способом, не требующим больших капитальных затрат. Экономичность регулирования весьма высока. Скорость при регулировании меняется не плавно, а ступенями. Уменьшение синхронной скорости ниже 300 — 375 об / мин обычно не производится, так как оно приводит к значительному увеличению габаритов двигателей.

Процесс регулирования скорости электродвигателя.

Электродвигатели с переключением числа пар полюсов поля статора изготовляются на две, три и четыре скорости.

Регулирование скорости двигателей переключением числа пар полюсов возможно лишь в двигателе с короткозамкнутым ротором, так как только у этого двигателя число полюсов ротора всегда соответствует числу полюсов статора.

Схема включения тепловых реле в обмотку статора двигателя, пуск которого осуществляется переключением звезды на треугольник. а-соединение в зоезду. b — в треугольник.

У двигателей с переключением числа пар полюсов случается, что токи в подводящей линии и в самой обмотке при разной скорости вращения ротора значительно отличаются друг от друга.

Получение пониженной скорости путем переключения числа пар полюсов осуществляется в многоскоростном двигателе; при этом величина рабочей скорости определяется известным рядом синхронных скоростей: 3000, 1 500, 1 000, 750 и 500 об / мин. Двигатели со скоростями, меньшими 500 об / мин, редко изготовляются, следовательно, начальная скорость перед окончательным торможением может быть снижена максимум в 6 раз.

Переход от угловой к линейной скорости

Существует различие между линейной скоростью точки и угловой скоростью. При сравнении величин в выражениях, описывающих правила вращения, можно увидеть общее между этими двумя понятиями. Любая точка В, принадлежащая окружности с радиусом R, совершает путь, равный 2*π*R. При этом она делает один оборот. Учитывая, что время, необходимое для этого, есть период Т, модульное значение линейной скорости точки В находится следующим действием:

ν = 2*π*R / Т = 2*π*R* ν.

Так как ω = 2*π*ν, то получается:

Следовательно, линейная скорость точки В тем больше, чем дальше от центра вращения находится точка.

К сведению. Если рассматривать в качестве такой точки города на широте Санкт-Петербурга, их линейная скорость относительно земной оси равна 233 м/с. Для объектов на экваторе – 465 м/с.

Максимальная и номинальная мощность двигателей

В 2010 году европейские и американские производители двигателей прекратили указывать их мощность, ограничившись лишь показателями объема и крутящего момента, выраженного либо в Ньютонах на метр (Н/м) либо в американской системе – футов на фунт (Ft/Lbs). Во втором случае, чтобы получить более привычные для нас единицы, достаточно умножить значение на 1,356. Впрочем, полученные данные все равно не столь очевидны, чтобы сразу сориентироваться в мощности устройства.

Мощность измеряется по формуле P (Вт) = Момент (Н·м) *Частоту вращения (Об/мин) / 9.5492.

Нужно иметь в виду, что максимальная мощность и максимальный момент достигаются при разных оборотах двигателя. Так максимальный момент, как видно из графика, будет на оборотах примерно 2400-2600, а максимальная мощность – при 3600 об/мин. Поэтому, для того, чтобы все-таки узнать на какой мощности у вас работает двигатель, нужно знать, на какие рабочие обороты он настроен, что не все производители указывают. Серьезные компании двигателей указывают для этого график, аналогичный представленному внизу, или конкретные значения мощности, зависящие оборотов. Если у вас есть регулятор оборотов двигателя, значит, максимальная мощность будет на максимальных оборотах.

Этим различием и пользовались производители двигателей: указывая мощность, которую можно получить при завышенных оборотах (например, 5.0 л.с., которую можно достичь при 4500 об/мин), при этом сам двигатель при постоянной работе был настроен на обороты 3600, выдавая всего 3.5 л.с. Численно мощность от оборотов зависит гораздо больше, чем от момента. Надо также понимать, что при завышении оборотов мощность растет, а крутящий момент падает.

Практически это означает, что для косилки, чем больше мощность, тем на большие обороты можно раскрутить нож или на те же обороты, но более длинный/тяжелый нож. Но при этом, если задрать обороты и соответственно уменьшить крутящий момент, то нож сможет преодолевать все меньшее сопротивление. То есть наступает ситуация, что при последующем увеличении оборотов, будет уменьшаться крутящий момент, и двигатель будет раньше глохнуть при увеличении сопротивления (нагрузки) и, значит, хуже будет косить густую траву.

Поэтому с 2010 года чаще всего указывается мощность двигателя, работающего в конкретной технике с учетом ее использования и установленным рабочим числом оборотов. На двигателях же указывается только максимальный крутящий момент, на который и стоит ориентироваться, ведь чем он больше, тем лучше устройство будет справляться со своей задачей.

Все это касается нормальных (брендовых) производителей техники. Сейчас все больше и больше появляется двигателей из Китая, как и от европейских производителей (MTD, Emak, Stiga, Al-Ko и т.д.), так и собственно китайских брендов Zongshen, Loncin, Rato, Lifan и других. Также существует большое количество «заказных» марок сделанных на основе аутсорсинга, то есть владелец бренда заказывает двигатели под собственным названием на заводах в Китае. А тут уже все зависит от добросовестности заказчика/поставщика этих агрегатов. По вашей просьбе и за ваши деньги в Китае вам напечатают любой паспорт и наклейки с любыми цифрами. Поэтому, покупая культиватор/косилку с гордой надписью 7-8 л.с. с китайским мотором, вы можете получить двигатель реальной мощности 4-5 л.с. Но так как в России потребитель в первую очередь выбирает технику по мощности, то наша компания, по возможности, указывает для бензиновой техники с четырехтактными двигателями две мощности: максимальную — завышенная мощность, которую указывали до 2010 года и продолжают указывать некоторые производители/продавцы для увеличения привлекательности своего товара, и номинальную (реальную). Но номинальную мощность, к сожалению, указывают не все производители или указывают завышенную, выдавая ее за номинальную. При этом этот параметр можно замерить только в заводских условиях, поэтому не во всех товарах есть возможность указать данную характеристику.

Также мы рекомендуем в первую очередь обращать внимание на крутящий момент и объем двигателя. Учитывая, что двигатели на садовой технике сконструированы достаточно просто (нет никакого турбо наддува, форсажа и т.д.), то с одного объема невозможно снять больше мощности на 30-50%.